165

The  article  considers  the  results  of  the  analysis  of  autotransformers  operation  mode 
monitoring.  The  time  diagram  of  active  load  current  and  oil  temperature  of  autotransformer 
TashTES  AT-3  is  established  and  during  one  year  changes  of  these  variables  and  basic 
parameters  of  autotransformer  were  observed.  Technical  faults  of  the  power  transformer  and 
high  power  autotransformer  are  established  and  methods  of  their  elimination  are  determined. 
Damage of transformers and autotransformers with voltage of 110-500 kV of about 30% of the 
total number of outages which were accompanied by internal short-circuits and two main causes 
of  damage  were  determined.  The  main  causes  of  technological  failures,  which  were  not 
accompanied by internal short-circuits, are as follows: 20% of failures in operation of the onload tap-changer, 16% of oil leaks from the bushings, 13% of oil leaks and lowering of oil from 
the transformer due  to violation of welded joints and rubber seals, 4% of engine damage to oil 
pumps of the cooling system, 3% of pressure increase in high-voltage hermetic bushings, 2% of 
film  protection  shell  damage.  The  main  reasons  of  technological  violations  accompanied  by 
internal short-circuit in the transformer are as follows: breakdown of internal insulation of highvoltage  bushings,  insufficient  short-circuit  resistance,  wear  and  tear  of  winding  insulation, 
breakdown of insulation

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 29-01-2020
  • Read count 152
  • Date of publication 12-12-2019
  • Main LanguageIngliz
  • Pages210-218
Ўзбек

Maqolada  avtotransformatorning  ish  rejimlari  tahliliy  monitoringi  yuritilgan.  Bu  monitoring 
asosida  TashIESdagi  AT-3  avtotransformatorining  toki,  aktiv  yuklamasi  va  moyi 
temperaturasining vaqtga bog’liqlik grafigi qurilgan hamda bir yil davomida bu kattaliklarning 
o'zgarishlari  kuzatilgan  va   AT-3  avtotransformatorining  asosiy  parametrlari  ham 
hisoblangan.Undan  tashqari  katta  quvvatli  transformator  va  avtotransformatorning  tehnik 
nosozliklari hamda uni bartaraf qilish usullari, nominal kattaliklari jadval asosida tuzilgan va 
shikastlanish  tahlillari  keltirilgan.  110-500  kV  kuchlanishli  transformator  va 
avtotransformatorda  ichki  qisqa  tutashuvlarning  kelib  chiqish  sabablari  hamda  keltiriladigan 
zararning  tahminan  30%  ini  tashkil  qilganligi  aniqlangan.  quyidagi  ko'rib  chiqilgan  avariya 
holatlari uchun: RPN ning ish davomida buzilishi 20% ni, chiqishlardan moyning oqib ketishi 
16%  ni,  transformatorning  payvandlangan  qismlari  va  zichlovchi  rezinalaridan  moyning  oib 
ketishi  va  qo'yib  yuborishi  13%  ni,  moy  nasolari  va  sovutish  tizimidagi  motorlarning  ishdan 
chiqishi  4%  ni,  germetik  chiqishlaridagi  simning  ko'payib  ketishidan  3%  ni  tashkil  etadi. 
Transformatordagi  asosiy  qisqa  tutashuv  sabablari  quyidagilarga  ko'ra  kelib  chiqqan:  yuqori 
kuchlanish chiqishi izolyaciyasining teshilishi, qisqa tutashuv tokiga chidamliligi  etarli emasligi, 
chulg’amning izolyaciyasi buzilishi, chulg’am izolyaciyasi teshilishi.

Tags
English

The  article  considers  the  results  of  the  analysis  of  autotransformers  operation  mode 
monitoring.  The  time  diagram  of  active  load  current  and  oil  temperature  of  autotransformer 
TashTES  AT-3  is  established  and  during  one  year  changes  of  these  variables  and  basic 
parameters  of  autotransformer  were  observed.  Technical  faults  of  the  power  transformer  and 
high  power  autotransformer  are  established  and  methods  of  their  elimination  are  determined. 
Damage of transformers and autotransformers with voltage of 110-500 kV of about 30% of the 
total number of outages which were accompanied by internal short-circuits and two main causes 
of  damage  were  determined.  The  main  causes  of  technological  failures,  which  were  not 
accompanied by internal short-circuits, are as follows: 20% of failures in operation of the onload tap-changer, 16% of oil leaks from the bushings, 13% of oil leaks and lowering of oil from 
the transformer due  to violation of welded joints and rubber seals, 4% of engine damage to oil 
pumps of the cooling system, 3% of pressure increase in high-voltage hermetic bushings, 2% of 
film  protection  shell  damage.  The  main  reasons  of  technological  violations  accompanied  by 
internal short-circuit in the transformer are as follows: breakdown of internal insulation of highvoltage  bushings,  insufficient  short-circuit  resistance,  wear  and  tear  of  winding  insulation, 
breakdown of insulation

Русский

В  статье  рассматриваются  результаты  анализа  мониторинга  режима  работы 
автотрансформаторов.  Установлена  временная  диаграмма  тока  активной  нагрузки  и 
температуры  масла  автотрансформатора  ТашТЭС  АТ-3  и  в  течение  одного  года 
наблюдались изменения этих переменных и основных параметров  автотрансформатора.
Установлены  технические  неисправности  силового  трансформатора  и 
автотрансформатора большой мощности и  созданы  методы их устранения.  Определен 
ущерб  трансформаторов и автотрансформаторов напряжением110-500 кВ около 30% 
от   общего   числа   отключений,  который  сопровождался  возникновением   внутренних 
коротких замыканий и установлены две основные причины повреждаемости. Основными 
причинами технологических нарушений, не сопровождавшихся внутренними КЗ, являются 
следующие:нарушения  в  работе  РПН  -  20%,  течи  масла  из  вводов  -  16%,течи  и  спуск 
масла из трансформатора из-за нарушения сварных соединений и резиновых уплотнений -13%,повреждение  двигателей  маслонасосов  системы  охлаждения  -  4%,повышение 
давления  в  высоковольтных  герметичных  вводах  -  3%,повреждение  оболочки  пленочной 
защиты  -  2%.Основными  причинами    технологических    нарушений,  сопровождающиеся 
внутренним  КЗ  в  трансформаторе,  являются:пробой  внутренней  изоляции 
высоковольтных  вводов,  недостаточная  стойкость  при  КЗ,  износ  изоляции  обмоток, 
пробой изоляции.

Tags
Author name position Name of organisation
1 Isakov F.U. assistent TDTU
Name of reference
1 1. VaganovM.A. Transformatorы. – SPB.: Izdatelstvo SPBGETU«LETI», 2014. – 111 c. 2. Salimov J.S., Pirmatov N.B., Bekchanov B.E. Transformatorlar va avtotransformatorlar, Toshkent, Vektor – press, 2010. – 224 s. 3. Alimxodjaev K.T., Pirmatov N.B., Ziyoxodjaev T.I., Elektr mashinalari, Toshkent Fan va texnologiya, 2018. – 344 c. 4. Salimov J.S., Pirmatov N.B., Elektr mashinalari. Toshkent, O„zbekiston faylasuflari milliy jamiyati nashriyoti, 2011, - 406s. 5. Ahmad, M. (2010). High Performance AC Drives. Modeling Analysis and Control, Springer, ISBN 978-3-642-13149-3, London, UK Техника фанлари ва инновация №2/2019 й. Technical science and innovation 218 6. Boldea, I. & Tutelea, L. (2010). Electric Machines. Steady State, Transients and Design with MATLAB, CRC Press, ISBN 978-1-4200-5572-6, Boca Raton, USA 7. Bose, B. (2006). Power Electronics and Motor Drives, Elsevier, ISBN 978-0-12-088405-6, San Diego, USA 8. Chiasson, J. (2005). Modeling and High-Performance Control of Electrical Machines, IEEE Press, Wiley Interscience, ISBN 0-471-68449-X, Hoboken, USA 9. De Doncker, R.; Pulle, D. & Veltman, A. (2011). Advanced Electrical Drives. Analysis, Modeling, Control, Springer, ISBN 978-94-007-0179-3, Dordrecht, Germany 10. Krause, P.; Wasynczuk, O. & Sudhoff, S. (2002). Analysis of Electric Machinery and Drive Systems (sec. ed.), IEEE Press, ISBN 0-471-14326-X, Piscataway, USA 11. Marino, R.; Tomei, P. & Verrelli, C. (2010). Induction Motor Control Design, Springer, ISBN 978-1-84996-283-4, London, UK 12. Ong, C-M. (1998). Dynamic Simulation of Electric Machinery using Matlab/Simulink, Prentice Hall, ISBN 0-13-723785-5, New Jersey, USA 13. Simion, Al.; Livadaru, L. & Lucache, D. (2009). Computer-Aided Simulation on the Reversing Operation of the Two-Phase Induction Machine. International Journal of Mathematical Models and Methods in Applied Sciences, Iss. 1, Vol. 3, pp. 37-47, ISSN 1998-0140 14. Simion, Al. (2010). Study of the Induction Machine Unsymmetrical Condition Using In Total Fluxes Equations. Advances in Electrical and Computer Engineering, Iss. 1 (February 2010), pp. 34-41, ISSN 1582-7445 15. Simion, Al. & Livadaru, L. (2010). On the Unsymmetrical Regime of Induction Machine. Bul. Inst. Polit. Iaşi, Tomul LVI(LX), Fasc.4, pp. 79-91, ISSN 1223-8139 16. Simion, Al.; Livadaru, L. & Munteanu, A. (2011). New Approach on the Study of the Steady-State and Transient Regimes of Three-Phase Induction Machine. Buletinul AGIR, Nr.4/2011, pp. 1-6, ISSN-L 1224-7928 17. R. Marino, P. Tomei, and C.M. Verrelli. A global tracking control for speedsensorless induction motors. Automatica, 40(6):1071–1077, 2004. 18. Marino, P. Tomei, and C.M. Verrelli. Adaptive control for speed-sensorless induction motors with uncertain load torque and rotor resistance. International Journal of Adaptive Controland Signal Processing, 19(9):661–685, 2005. 19. R. Marino, P. Tomei, and C.M. Verrelli. A nonlinear tracking control for sensorlessinductionmotors. Automatica, 41(6):1071–1077, 2005. 20. Marino, P. Tomei, and C.M. Verrelli. An adaptive tracking control from current measurements for induction motors with uncertain load torque and rotor resistance. Automatica, 44(10):2593–2599, 2008. 21. Marino, P. Tomei, and C.M. Verrelli. A nonlinear tracking control for sensorless induction motors with uncertain load torque. International Journal of Adaptive Control and SignalProcessing, 22(1):1–22, 2008.
Waiting