250

In  article  discusses  issues  for  solving  optimization  problems  based  on  the  use  of  genetic 
algorithms. To date, the genetic use algorithm for solving various problems. Which includes the 
shortest  path  search,  approximation,  data  filtering  and  others.  In  particular,  data  is  being 
examined regarding the use of a genetic algorithm to solve problems of optimizing the modes of 
electric  power  systems.  Imagine  an  algorithm  for  developing  the  development  of  mathematical 
models,  which  includes  developing  the  structure  of  the  chromosome,  creating  a  started 
population,  creating  a  directing  force  for  the  population,  etc.  As  well  as  the  presentation,  the 
selected structure should take into account all the features and limitations imposed on the desired 
solution, as well as the fact that the implementation of crossоver and mutation algorithms directly 
depends on its choice. To solve optimization problems, a block diagram of the genetic algorithm is 
given.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 29-01-2020
  • Read count 237
  • Date of publication 12-12-2019
  • Main LanguageIngliz
  • Pages225-230
Ўзбек

Maqolada  genetik  algoritmlardan  foydalanishga  asoslangan  optimallashtirish 
muammolarini  hal  qilish  masalalari  ko'rib  chiqilgan.  Bugungi  kunga  kelib,  turli  xil 
muammolarni  hal  qilish  uchun  genetik  algoritmlardan  foydalaniladi.  Bu  eng  qisqa  yo'llarni 
qidirish, yaqinlashtirish, ma'lumotlarni filtrlash va boshqalarni o'z ichiga oladi. Xususan, elektr 
tarmoqlari holatlarini optimallashtirish muammolarini hal qilish uchun genetik algoritmlardan 
foydalanish  to'g'risidagi  ma'lumotlar  o'rganilgan.  Xromosoma  tuzilishini  rivojlantirish, 
boshlang'ich  populyatsiyani  yaratish,  populyatsiya  uchun  yo'naltiruvchi  kuchni  yaratish  va 
boshqalarni  o'z  ichiga  olgan  matematik  modellarni  ishlab  chiqish  algoritmikeltirib  o’tilgan. 
Bundan  tashqari,  tanlangan  sxema  kerakli  yechimga  bog'liq  bo'lgan  barcha  xususiyatlar  va 
cheklashlarni,  shuningdek,  o'tish  va  mutatsion  algoritmlarni  amalga  oshirish  uni  tanlashga 
bevosita  bog'liqligini  hisobga  olishi  kerakligi  ham  ko’rsatib  o’tilgan.  Optimallashtirish 
muammolarini hal qilish uchun genetik algoritmning blok-sxemasi berilgan.

Tags
English

In  article  discusses  issues  for  solving  optimization  problems  based  on  the  use  of  genetic 
algorithms. To date, the genetic use algorithm for solving various problems. Which includes the 
shortest  path  search,  approximation,  data  filtering  and  others.  In  particular,  data  is  being 
examined regarding the use of a genetic algorithm to solve problems of optimizing the modes of 
electric  power  systems.  Imagine  an  algorithm  for  developing  the  development  of  mathematical 
models,  which  includes  developing  the  structure  of  the  chromosome,  creating  a  started 
population,  creating  a  directing  force  for  the  population,  etc.  As  well  as  the  presentation,  the 
selected structure should take into account all the features and limitations imposed on the desired 
solution, as well as the fact that the implementation of crossоver and mutation algorithms directly 
depends on its choice. To solve optimization problems, a block diagram of the genetic algorithm is 
given.

Русский

В  статье  рассматриваются  вопросы  решения  задач  оптимизации  на  основе 
использования  генетических  алгоритмов.  На  сегодняшний  день  генетический  алгоритм
используется  для  решения  различных  задач,  к  которым  относятся:  поиск  кратчайшим 
путѐм,  аппроксимация,  фильтрация  данных  и  другие.  В  частности,  рассматривается 
вопрос   использования   генетического  алгоритма  для  решения  задач  оптимизации 
режимов  электроэнергетических  систем.  Представляем  алгоритм  по  математической 
модели,  который  включает  разработку  структуры  хромосомы,  создания  начал 
популяции, создания направляющий силы популяции и др. А также выбранная структура 
должна учитывать все особенности и ограничения, предъявляемые к искомому решению, 
а  также  то,  что  от  еѐ  выбора  напрямую  зависит  реализация  алгоритмов  кроссовер  и 
мутации.  Для  решения  задач  оптимизации  приведен  блок  схемы  генетического 
алгоритма. 

Tags
Author name position Name of organisation
1 Pulatov B.M. katta o'qituvchi TDTU
Name of reference
1 Emilyanov V.V., Kureychik V.M. Teoriya I praktika evolyusionnogo modelirovaniya. - М: Fizmatlit, 2013. – s. 432. 2. Gladkov L.A., Kureychik V.V., Kureychik V.M. Geneticheskiye algoritmi: Uchebnoye posobiye. - 2-е izd. - М: Fiznatlit, 2006. - s. 320. 3. Darrel Whitley "A Genetic Algorithm Tutorial", 2016.-256 p. 4. Tsoy Yu.R., Spistin V.G. Geneticheskiy algoritm/Spisin V.G., Tsoy Yu.R. Predstavleniye znaniy v informatsionnix sistemax: uchebnoe posobie. -Tomsk: Izd-vo TPU, 2016. -146 s. 5. Gayibov T.Sh., Pulatov B.M., Qayumov J.A. Minimization of Losses in Distributed Power Networks by Genetic Algorithms.- International Journal of Advanced Research in Science, Engineering and Technology.-Vol. 6, Issue 2, February 2019.- pp. 8037-8039. 6. Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons 7. AbdellahLaoufi , Collective Intelligence for Optimal Power Flow Solution Using Ant Colony Optimization, Leonardo Electronic Journal of Practices and Technologies, p.88-105,2008. 8. Gayibov T.Sh. Effektivniy algoritm optimizasii rejimov energosistem // Sbornik statey mejdunarodnoy nauchnoy konferensii «Innovasiya-2002». – Tashkent, 2002. – S. 90-91. 9. Rana S.B., Whitley L.D., Bit representations with a twist. – Proc. 7th International Conference of Genetic Algorithms, 1997. Техника фанлари ва инновация №2/2019 й. Technical science and innovation 230 10. Ruderich R., Fuel Cell Principles. Lecture notes. University of Applied Sciences, Ulm, Germany. 2003. 11. Sopov E.A. Probabilistic genetic programming design // Actual problems of informatics and intelligent techniques. - Tambov, 2004. - P. 98 – 99. 12. Larmine J., Dicks A. Fuel Cell Systems Explained, Second Edition. – John Wiley & Sons, Ltd, 2003. 13. Ruban A.I. Metodi optimizasii: Uchebnoe posobie. Izd. 2-ое. Krasnoyarsk NII IPU, 2001. 528 s. 14. Bartolomey P.I., Panikovskaya T.А. Optimizasiya rejomov energosistem: Uchebnoe posobie / Еkaterinburg: UGTU – UPI, 2008. - 164 s. 15. Makoklyuyev B.I. Analiz I planirovaniye elektropotrebleniya. – М.: Energoatomizdat, 2008. - 296 s. 16. Filippova T.A. i dr. Optimizasiya rejimov elektrostansiy i energosistem: Uchebnik; – Novosib. gos. texn. un-t. - Novosibirsk, 2007. - 356 s. 17. Suxanov О.А., Sharov Yu.V. Ierarxicheskiye modeli v analize i upravlenii rejimami elektroenergeticheskix system.– М.: Izdatelskiy dom MEI, 2007. – 312 s. 18. Likin A.V. Elektricheskie sistemi i seti: Ucheb. posobiye. – М.: Universitetskaya kniga; Logos, 2006. – 254 s. 19. Kochura А.V. Geneticheskiye algoritmi v MatLAB: metodicheskiye ukazaniya. – Kursk: Avtorskaya redaksiya, 2010. – 19 s 20. Whitley D.L. Genetic Algorithms and Evolutionary Computing. Van Nostrand's Scientific Encyclopedia 2002.. UDC. 621.311
Waiting