An approach for defining critical temperatures of buckling for a pivotally resting plane
cylindrical shell has been considered. Operation in various climatic zones leads to buckling of
roof elements of passenger cars. In connection with that, it is necessary to have a theoretical
justification of structural solutions taking into account critical temperatures of buckling of shell
elements. The roof element of the passenger car should be classified as plane cylindrical shells.
An expression for defining critical temperatures by the Bubnov-Galerkin method has been
obtained, as well as the equations of plane cylindrical shells proposed by V.Z. Vlasov. The
results calculated with the derived expression have been verified by comparison with those
obtained by the finite element method (FEM). This comparison has demonstrated satisfactory
agreement of these results.
Bu ishda tekis silindrik qobiqning sharnir bog'lanishdagi xolatida ustuvorlikni yoqotish
holatlaridagi kritik temperaturani aniqlash ko'rib chiqilgan. Kuzatuvlar natijasida turli iqlimga
ega hududlarda vagon ustki qobig’larining ustuvorligini yoqotishi o’rganildi. Nazariy jihatdan
qobiqning kritik temperaturasiga bo’g’liq ekanligi aniqlandi. Yarim slindrik qobiq ko’rinishida
element tanlanib olindi. Kritik temperaturani aniqlashda Bubnov-Galeyorkin metodidan va
V.Z.Vlasovning yarim silindirik qobiq uchun olingan tenglamasidan foydalanilgan. Hisoblash
ishlari bajarilgan va to'liq xolat uchun Chekli elementlar metodi yordamida olingan natijalar
bilan solishtirilgan.Olingan natijalar o'zoro yaqinlashishi keltirilgan.
An approach for defining critical temperatures of buckling for a pivotally resting plane
cylindrical shell has been considered. Operation in various climatic zones leads to buckling of
roof elements of passenger cars. In connection with that, it is necessary to have a theoretical
justification of structural solutions taking into account critical temperatures of buckling of shell
elements. The roof element of the passenger car should be classified as plane cylindrical shells.
An expression for defining critical temperatures by the Bubnov-Galerkin method has been
obtained, as well as the equations of plane cylindrical shells proposed by V.Z. Vlasov. The
results calculated with the derived expression have been verified by comparison with those
obtained by the finite element method (FEM). This comparison has demonstrated satisfactory
agreement of these results.
В статье рассматривается подход по определению критических температур, при
которых происходит потеря устойчивости, шарнирно опирающейся пологой
цилиндрической оболочки. Эксплуатация в различных климатических зонах приводит к
Mechanical Engineering
271
потере устойчивости элементов крыш пассажирских вагонов. В связи с этим
необходимо иметь теоретическое обоснование конструктивных решений с учетом
критических температур потери устойчивости оболочечных элементов. Элемент крыши
пассажирского вагона следует относить к пологим цилиндрическим оболочкам. Получено
выражение по определению критической температуры с помощью метода Бубнова-Галеркина и уравнения пологих цилиндрических оболочек, предложенного В.З Власовым.
Верификация результатов, рассчитанных по полученному выражению, выполнялась
сравнением с результатами, по МКЭ. Оценка показала удовлетворительную сходимость
результатов.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Grigoriev P.S. | kat o'qituvchi | Российского университета транспорта (РУТ (МИИТ)), Москва, |
2 | Ibodulloev S.R. | o'qituvchi | Национальный университет Узбекистан (НУУЗ),Ташкент |
3 | Poyonov V.B. | talaba | Национальный университет Узбекистан (НУУЗ),Ташкент |
№ | Name of reference |
---|---|
1 | Volmir A.S. Stability of systems under deformation. Moscow, Nauka, 1967, 984p. 2. Pogorelov V.I. Stroitel’naya mexanika tonkostennix konstruktsiy. SPv.: BXVPeterburg, 2007. 528 s. 3. Konstruirovanie I raschot vagonov: uchebnik/ V.V.Lukin, P.S. Anisimov, V.N. Koturanov i dr.; pod red. P.S. Anisimova. —2-e izd., pererab i dop. — M.: FGOU «UMTS», 2011.- 688 s. 4. Ispol’zovanie paket ANSYS dlya proektirovaniya detaley aviatsionniix redakturov: ucheb.posobie / V.B.Balyakin, A.G. Kojin. - Samara: Izd-vo Samar, gos. aerokosm, un-ta, 2007. - 44 s. 5. Utilin V.V., Physically non-linear analysis of structure stability. StP., GIORD, 2007, 96p. 6. Trebushko O.I Osnovii teorii uprugosti i plastichnosti – Москва: Наука,1984,320 с. 7. Golovanov A.I., Berjnoy D.V. Metod konechniix elementov v mexanike deformiruemiix tverdiix tel. -Kazan: izd-vo «DAS», 2001. –300s. 8. Fadeev A.B Metod konechniix elementov v geomexanike. - M.:Nedra,1987, 221s. 9. Cing-Dao K., Dhafer M., Goerge T.B., Naih.E.B.. ―Crashworthiness Evalution Using Integrated Vehiscle and Occupant Finite Element Models‖. Internation Journal of Crashworthiness,pp:387-398,2001. 10. Pradeep M., Chung-Kyu P., Dhafer M., et al. ―LSTC/NCAC Dymmy Model Development‖. 11 th International LS-DYNA User Conference,2010 11. Xaldjigitov A.A., Xudazarov R.S., Sagdullaev D.A. Teorii plastichnosti I termoplastichnosti anizotropniix tel -T.: Fan va texnologiya, 2015, 320 s. 12. Carl.T.F Ross Finite element techniques in structural mechanic. –International publishers, Coll House, Westergate,England-1996,206 p 13. Ahkmedov A.B Shamsiev D.N. Neklassicheskaya teoriya plastin slojnoy konfiguratsii s peremennoy tolshinoyНеклассическая теория пластин сложной конфигурации с переменной толщиной Vestnik TGTU –Tashkent, 2013.,–№2.–C.14–23 14. Begmatov A.,Mamatova N.T. Zadacha o vnezapnom nagrujenii uprugo-plasticheskogo sterjnya, vzaimodeystvuyushego s okrujayushey sredoy // «Problemii mexanike».- 2019, №2 .Tashkent Mechanical Engineering 275 15. Ibodulloev Sh.R., Tilovov O. O’ Kompozit materiallarini nochiziqli deformatsiyalanishini ANSYS dasturida modellashtirish// ―XXI asrda ilm-fan taraqqiyotining rivojlanish istiqbollari va ularda innovatsiyaning tutgan o’rni‖ respublika ilmiy konferensiyasi. http://doi.org/10.26739/online_4 2019, №4. .414-416b. |