In theory of differential games, the problems put geometric, integral and their
being together constraints to controls were studied sufficiently. In this paper, the evasion problem
of the second order differential game will be stuided in which case new control classes with the
name of constraint of Gronwall type have been introduced to control functions.
In theory of differential games, the problems put geometric, integral and their
being together constraints to controls were studied sufficiently. In this paper, the evasion problem
of the second order differential game will be stuided in which case new control classes with the
name of constraint of Gronwall type have been introduced to control functions.
Differensial o‘yinlar nazariyasida boshqaruvlarga geometrik, integral va
ularning birgalikdagi chegaralanishlari qo‘yilgan masalalar yetarlicha o‘rganilgan. Ushbu
maqolada boshqaruv funksiyalariga Gronuoll tipidagi chegaralanish nomi bilan yangi boshqaruv
sinflari kiritilgan holda ikkinchi tartibli differensial o‘yinning qochish masalasi o‘rganilgan.
В теории дифференциальных играх достаточно изучены задачи
задающего при управления геометрического, интегрального и их совместных
ограничениях. В работе изучается задача убегания для дифференциальных игр второго
порядка, когда начальные состояния и начальные скорости игроков линейно зависимы при
ограничениях Гронуолла на управления.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Horilov M.A. | NamSU | |
2 | Soyibboev U.B. | NamSU | |
3 | Hamitov A.A. | NamSU |
№ | Name of reference |
---|---|
1 | Gronwall T.H. (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2):293–296. |
2 | Azamov A.A., Samatov B.T.(2010) The Π-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management, St. Petersburg: 33 – 47. |
3 | Subbotin A.I., Chentsov A.G. (1981). Optimization of Guaranteed Result in Control Problems. Nauka, Moscow. |
4 | Jack K. Hale. (1980). Ordinary differential equations. Krieger Malabar, Florida: 28 – 37. |