In this work is considered a differtial game of the second order, when control
functions of the players satisfies geometric constraints. The proposed method substantiates the
parallel approach strategy in this differential game of the second order. The new sufficient
solvability conditions are obtained for problem of the pursuit.
In this work is considered a differtial game of the second order, when control
functions of the players satisfies geometric constraints. The proposed method substantiates the
parallel approach strategy in this differential game of the second order. The new sufficient
solvability conditions are obtained for problem of the pursuit.
Ushbu ma’ruzada boshqaruvlar Gronoull chegaralanishga ega holda
ikkinchi tartibli differensial o‘yinlar uchun tutish masalasi o‘rganiladi. Bunda quvlovchi uchun
parallel quvish strategiyasi quriladi va uning yordamida tutish masalasi uchun yetarli shartlar
keltiriladi.
В работе рассматривается дифференциальная игра второго порядка
при ограничениях Гронуолла на управления игроков. При этом предлагается стратегия
параллельного преследования для преследователя и при помощи этой стратегии
решается задача преследования.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Mirzamaxmudov U.A. | Namdu | |
2 | Doliyev O.B. | Namdu | |
3 | Axmedov O.U. | Namdu |
№ | Name of reference |
---|---|
1 | Gronwall T.H. (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2):293–296. |
2 | Azamov A.A., Samatov B.T.(2010) The Π-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management, St. Petersburg: 33 – 47. |
3 | Subbotin A.I., Chentsov A.G. (1981). Optimization of Guaranteed Result in Control Problems. Nauka, Moscow. |
4 | Jack K. Hale. (1980). Ordinary differential equations. Krieger Malabar, Florida: 28 – 37. |