381

In this work  is considered a differtial game of the second order, when control 
functions  of  the players  satisfies geometric  constraints. The proposed method  substantiates  the 
parallel  approach  strategy  in  this  differential  game  of  the  second  order.  The  new  sufficient 
solvability conditions are obtained for problem of the pursuit.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 04-03-2020
  • Read count 371
  • Date of publication 10-07-2019
  • Main LanguageIngliz
  • Pages23-28
English

In this work  is considered a differtial game of the second order, when control 
functions  of  the players  satisfies geometric  constraints. The proposed method  substantiates  the 
parallel  approach  strategy  in  this  differential  game  of  the  second  order.  The  new  sufficient 
solvability conditions are obtained for problem of the pursuit.

Ўзбек

Ushbu  ma’ruzada  boshqaruvlar  Gronoull  chegaralanishga  ega  holda 
ikkinchi tartibli differensial o‘yinlar uchun tutish masalasi o‘rganiladi. Bunda quvlovchi uchun 
parallel quvish strategiyasi quriladi va uning yordamida tutish masalasi uchun yetarli shartlar 
keltiriladi.  

Русский

В работе рассматривается дифференциальная игра второго порядка 
при ограничениях Гронуолла на управления игроков. При  этом предлагается стратегия 
параллельного  преследования  для  преследователя  и  при  помощи  этой  стратегии 
решается задача преследования.  

Author name position Name of organisation
1 Mirzamaxmudov U.A. Namdu
2 Doliyev O.B. Namdu
3 Axmedov O.U. Namdu
Name of reference
1 Gronwall T.H. (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2):293–296.
2 Azamov A.A., Samatov B.T.(2010) The Π-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management, St. Petersburg: 33 – 47.
3 Subbotin A.I., Chentsov A.G. (1981). Optimization of Guaranteed Result in Control Problems. Nauka, Moscow.
4 Jack K. Hale. (1980). Ordinary differential equations. Krieger Malabar, Florida: 28 – 37.
Waiting