This paper discusses the equilibrium equations of flexible circular plates under the action of uniformly distributed loads. We will use the known equations of equilibrium of the plate in curved coordinates. Equation equilibrium of flexible circular plates through forces and cutting forces is obtained. By substituting these expressions into the resulting equations and entering a dimensionless value, a system of quasi-linear differential equations is obtained. To solve the system equation under the given boundary condition we use central difference formulas, approximating derivatives with second-order accuracy to the place of quasi-linear systems of differential equations obtaining systems of quasi-linear algebraic equations. The predetermined edge conditions of the flexible circular plates are reduced to a differential form which can be written in matrix form. To solve a system of quasi-linear algebraic equations, an implicit iterative process is applied in combination with the Gauss exclusion method. The obtained results are given in the form of graphs.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Yo'ldoshev A.. | dotsent | TDTU |
2 | Nikolaeva E.A. | Кузбасского государственного технического университета имени Т. Ф. Горбачева | |
3 | Pirmatov S.T. | dotsent | TDTU |
№ | Ҳавола номи |
---|---|
1 | 1. Lyav A. Matematicheskaya teoriya uprugosti. M.-L.: ONTI-NKTL SSR, 1935.-674 s. |
2 | 2. Volmir A.S. Nelineynaya dinamika plastin i obolochek M.: Nauka, 1972.-432s. |
3 | 3. Kabulov V.K. Algoritmizatsiya v teorii uprugosti na deformatsionnoy teorii plastichnosti. Tashkent: Fan, 1966. 394s. |
4 | 4. Demidovich B.P., Maron I.A. CHislennie metodi analiza. Pod. red. B.P. Demidovicha, M., Fiz.mat. giz.1962. |
5 | 5. Berezin I.S., Jidkov N.P.Metodi vichisleniy. T. I, II. M. Fiz.mat.giz. 1959g. |
6 | 6. A. YUldashev, SH. Pirmatov, A. Tilavov. Algoritm dlya dinamicheskogo rascheta gibkix pryamougolnix plastin s uchetom vyazkosti. Vestnik TGTU.№-4. 2014g. |
7 | 7. Buriev T., YUldashev A. Resheniya uravneniy ravnovesiya konicheskoy obolochki. Voprosi kibernetiki i vichislitelnoy matematiki. Vip. 1. Tashkent. Izdatelstvo «Fan» UzSSR. 1970. |
8 | 8. Timashenok S.B., Voynovskiy-Kriger S. Plastinki i obolochki. M., Fizmatgiz, 1963. |
9 | 9. E.S. Vyachkin, V.O. Kaledin, E.V. Reshetnikova, E.A. Vyachkina, A.E. Gileva. Razrabotka matematicheskoy modeli staticheskogo deformirovaniya sloistix konstruksiy s nesjimaemimi sloyami. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i mexanika. № 55. 2018. C.72-83. |
10 | 10. Teoriya gibkix kruglix plastin. Perev s kitaysk., pod red. prof. A.S. Volmira, IL. 1957. |
11 | Rogalev V.V. Izgib gibkix kruglix plastin peremennoy tolshini. «Izv. Vuzov», str-vo i arxitektr. № 1.1968. |
12 | 12. Kornishin M.S. Nekotorie voprosi primeneniya metoda konechnix raznostey dlya resheniya kraevix zadach teorii plastin. «Prikladnaya mexanika», T-9. № 3. 1963 g. |
13 | 13. Kildibekov I.G. Issledovaniya nelineynix kolebanii plastin. Sb. Teoriya plastinok i obolochek. M., Izdatelstvo «Nauka», 1971 g. |
14 | Demidovich B.B., Maron I.A. Osnovi vichislitetlnoy matematiki. M. Fiz.mat.gizy.1970 g. |
15 | 15. Buriev T., Yuldashev A. Dinamicheskiy raschet gibkix plastin metodom pryamix na EVM. Vsesoyuzniy simpozium po rasprostraneniyu uprugix i uprugoplasticheskix voln. Kishinev. 1958 g. |
16 | 16. Buriev T., Yuoldashev A. Primenenie EVM k resheniyu uravneniy poperechnix kolebaniy gibkix plit. Voprosi vichislitelnoy i prikladnoy matematiki. Vip. 9. Tashkent. Izdatelstvo «Fan», UzSSr. 1971 g. |
17 | 17. Fardoen Gerard C. Deflection functions for the symmetrical bending of circular plates. «AIAA Journal». 10. № 2. 1972. |