We consider exact and truncated difference schemes of m-th rank. It is proved that
for Helder continuity of matrix coefficients and the right part of the original boundary value problem,
truncated schemes of m-th rank have an accuracy of O(hm+μ) in a special weight norm.
В данной статье рассматривается краевая задача с логарифмической
особенностью для системы обыкновенных дифференциальных уравнений второго порядка. Для
этой краевой задачи построены и исследованы точная и усеченные разностные схемы. В
специальном весовом пространстве сеточных функций получена скорость сходимости усеченных
разностных схем m-того ранга , равная O(hm+μ) при непрерывности матричных коэффициентов и
правой части исходной дифференциальной задачи.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Hamroyev Y.Y. | ||
2 | Xoliqova .Q. |
№ | Ҳавола номи |
---|---|
1 | 1. Авдеев А. Д. О матричных дифференциальных уравнениях второго порядка. Дифференциальные уравнения , 1977 г. , т 13 №4. 579-591 |
2 | 2. Лужных В. М., Макаров И. Л., Хамроев Ю.Ю. Точные и уceченные разностные схемы для краевых задач в случае систем обыкновенных дифференциальных уравнений с вырождением Вычислительная и прикладная математика., Киев 1983 г . вып.51. C3-13. |
3 | 3. Самара А.А. Теория разностных схем. М .: Наука, 1977.656 с. |
4 | 4. Серль Ф. Метод конечных элементов для эллиптических задач. М., Мир. 1980. 227с. |
5 | 5. Эльснер В. О. О методе конечных разностей для вырождающихся обыкновенных дифференциальных уравнений. Дифференциальное уравнение. 1979г. 15, нет. 5. Из 828-839. |
6 | 6. Мухидинов Н. Методика расчета показателей разработки многопластовых нефтегазовых месторождений. Ташкент, «Фанат», 1978, 117 с. |
7 | 7. Тихонов А.Н. , Самарский А.А., Об одной разностной схеме высокого порядка точности. –ДАН СССР, т.137, 1960 , №3. |
8 | 8. Макаров В. Л. , Макаров И. Л., Приказчиков В. Г. Точные разностные схемы и схемы любого порядка точности для систем дифференциальных уравнений второго порядка- Дифф. уравнения , Т.15, 1979 г. №7. |
9 | 9. Тихонов А.Н. О зависимости решений дифференциальных уравнений от малого параметра // Матем. сб. Нов. сер.- 1948.- Т.22, вып.2.- С.193-204 |
10 | 10. Тихонов А.Н. О системах дифференциальных уравнений, содержащих параметры // Матем. сб.. Нов. сер.- 1950.- Т.27, вып.1.- С.147-156 |
11 | 11. Тихонов А.Н., Самарский А.А. Уравнения математической физики .- М.- Л.: Гос. изд. техн.-теорет. лит., 1951.- 660 |
12 | 12. Тихонов А.Н., Васильева А.Б., Волосов В.М. О зависимости решений дифференциальных уравнений от параметров // Труды 3 Всесоюз. матем. съезда .- 1956.- Т.2.- С.96-97 |
13 | 13. Тихонов А.Н., Самарский А.А. О разностных схемах для уравнений с разрывными коэффициентами // Докл. АН СССР.- 1956.- Т.108, №3.- С.393-396 |
14 | 14. Тихонов А.Н., Самарский А.А. Об однородных разностных схемах // Докл. АН СССР.-1958.- Т.122, №4.- С.562-565 |
15 | 15. Тихонов А.Н., Самарский А.А. О сходимости разностных схем в классе разрывных коэффициентов // Докл. АН СССР.- 1959.- Т.124,№3.- С.1529-1532 |
16 | 16. Тихонов А.Н., Самарский А.А. О коэффициентоустойчивости разностных схем // Докл. АН СССР.- 1960.- Т.131, №6.- С.1264-1267 |
17 | 17. Тихонов А.Н., Самарский А.А. Об однородных разностных схемах // Журн. вычислит. матем. и матем. физики .- 1961.- Т.1, №1.- С.5-62 |
18 | 18. Тихонов А.Н., Самарский А.А. О сходимости разностных схем в классе разрывных коэффициентов // Докл. АН СССР.- 1959.- Т.124,№3.- С.1529-1532 |
19 | 19. Тихонов А.Н., Самарский А.А. О коэффициентоустойчивости разностных схем // Докл. АН СССР.- 1960.- Т.131, №6.- С.1264-1267 |
20 | 20. Тихонов А.Н., Самарский А.А. Об однородных разностных схемах // Журн. вычислит. матем. и матем. физики .- 1961.- Т.1, №1.- С.5-62 |
21 | 21. Тихонов А.Н., Самарский А.А. Об однородных разностных схемах высокого порядка точности |