Мақолада Бессел-Клиффорд функцияларининг баъзи умумлашмалари ва уларнинг хоссалари баён қилинган.
Мақолада Бессел-Клиффорд функцияларининг баъзи умумлашмалари ва уларнинг хоссалари баён қилинган.
В статье описаны некоторые обобщения функций Бесселя-Клиффорда и их свойства.
The article describes some generalizations of the Bessel-Clifford functions and their properties.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Axmadjonova O.. | 1 | Fergana State University |
№ | Ҳавола номи |
---|---|
1 | 1. Clifford W.K. On Bessel functions// Mathematical Papers.-London: Oxford Univ. Press. 1882. |
2 | 2. Hayek.N. Perez –Acosta F. Asymptotic expressions of the Dirac delta function in terms of the Bessel- Clifford functions// Pure Appl. Math Sci.1993 |
3 | 3. Abromowitz M. Coloumb wave functions expressed in terms of Bessel- Clifford functions//J.Math. Phys.1954. |
4 | 4. Kiryakova V. The special functions of fractional calculus as generalized fractional calculus operators of some basic functions// Comput.Math. Appl. 2010. |
5 | 5. Witte N.S. Exact solution for the reflection and diffraction of atomic de Broglie waves by the travelling evanescent laser wave// J.Phys. A:Math.Gen.1998. |
6 | 6. Бейтмен Г., Эрдейи А. Высшие трансцендентные функции: Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. −М.: Наука, 1974. |
7 | 7. Delerue, P. (1953). Sur le calcul symbolique `a n variables et fonctions hyperbess´eliennes (II) Annales Soc. Sci. Bruxelles, ser. 1, No 3. |
8 | 8. Kljuchantzev, M. (1983). Singular differential operators with (r − 1) parameters and Bessel functions with vector indices (in Russian) Sibirskii Mat. Zhournal. 24, No 3. |
9 | 9. Marichev, O. I. (1978). Method of Calculation of Integrals of Special Functions (in Russian). Minsk Nauka i Technika. |
10 | 10. Adamchik, V. S. (1986). On the solution of the hyper-Bessel differential equation (in Russian) Diff. Uravnenia. 22, No 4. |
11 | 11. Dimovski, I. and Kiryakova, V. (1986). Generalized Poisson transmutations and corresponding representations of hyper-Bessel functions C. R. Acad. Bulg, Sci.39, No 10. |