106

Hozirgi vaqtda shо‘r suvdan chuchuk suv olishda quyosh suv chuchutgich qurilmalari keng qo‘llaniladi. Quyosh suv chuchutgichlari qadim zamonlardan buyon qо‘llanilsada, ularga ta’sir etuvchi omillarning kо‘pligi sababli, ushbu qurilmalarning unumdorligini oshirish bо‘yicha tadqiqot ishlari hozirgi kunda ham jadal olib borilmoqda. Ushbu tadqiqot ishida quyosh suv chuchutgich qurilmasining bug‘latish kamerasidagi bug‘lanish jarayonlarini oshirish orqali qurilmaning samaradorligini oshirish bо‘yicha olib borilgan tadqiqot ishlarining tahlili va qiyosiy ma’lumotlari keltirilgan. Shuningdek bug‘lanish tezligini oshirishning bir nechta usullari taklif etilgan va ularning har birini quyosh suv chuchutgichining unumdorligiga ta’siri natijalari keltirilgan. Ushbu tadqiqot ishida keltirilgan tahliliy ma’lumotlardan yuqori unumdorlikka ega quyosh suv chuchutgichlarini loyihalash va ishlab chiqishda foydalanish mumkin.

  • Internet ҳавола
  • DOI
  • UzSCI тизимида яратилган сана 17-05-2024
  • Ўқишлар сони 106
  • Нашр санаси 14-06-2023
  • Мақола тилиO'zbek
  • Саҳифалар сони28-36
Ўзбек

Hozirgi vaqtda shо‘r suvdan chuchuk suv olishda quyosh suv chuchutgich qurilmalari keng qo‘llaniladi. Quyosh suv chuchutgichlari qadim zamonlardan buyon qо‘llanilsada, ularga ta’sir etuvchi omillarning kо‘pligi sababli, ushbu qurilmalarning unumdorligini oshirish bо‘yicha tadqiqot ishlari hozirgi kunda ham jadal olib borilmoqda. Ushbu tadqiqot ishida quyosh suv chuchutgich qurilmasining bug‘latish kamerasidagi bug‘lanish jarayonlarini oshirish orqali qurilmaning samaradorligini oshirish bо‘yicha olib borilgan tadqiqot ishlarining tahlili va qiyosiy ma’lumotlari keltirilgan. Shuningdek bug‘lanish tezligini oshirishning bir nechta usullari taklif etilgan va ularning har birini quyosh suv chuchutgichining unumdorligiga ta’siri natijalari keltirilgan. Ushbu tadqiqot ishida keltirilgan tahliliy ma’lumotlardan yuqori unumdorlikka ega quyosh suv chuchutgichlarini loyihalash va ishlab chiqishda foydalanish mumkin.

Ҳавола номи
1 [1] Zhu Z., Peng D., Wang H. Seawater desalination in China: An overview. Water Reuse Desalination 2019, 9, 115-132.
2 [2] Liu J., Chen S., Wang H., Chen X. Calculation of Carbon Footprints for Water Diversion and Desalination Projects. Energy Procedia 2015, 75, 2483-2494
3 [3] Asadi R.Z., Suja F., Ruslan M.H., Jalil N.A. The application of a solar still in domestic and industrial wastewater treatment. Sol. Energy 2013, 93, 63-71.
4 [4] Tiwari G., Singh H., Tripathi R. Present status of solar distillation. Sol. Energy 2003, 75.
5 [5] Kabeel A., Harby K., Abdelgaied M., Eisa A. A comprehensive review of tubular solar still designs, performance, and economic analysis. Clean. Prod. 2020, 246, 119030.
6 [6] Kabeel A., Harby K., Abdelgaied M., Eisa A. A comprehensive review of tubular solar still designs, performance, and economic analysis. Clean. Prod. 2020, 246, 119030.
7 [7] Jobrane M., Kopmeier A., Kahn A., Cauchie H.M., Kharroubi A., Penny C. Internal and external improvements of wick type solar stills in different configurations for drinking water production-A review. Groundw. Sustain. Dev. 2021, 12, 100519.
8 [8] Arunkumar T., Raj K., Winfred Rufuss D.D., Denkenberger D., Tingting G., Xuan L., Velraj R. A review of efficient high productivity solar stills. Renew. Sustain. Energy Rev. 2019, 101, 197-220.
9 [9] Kumar H.A., Venkateswaran H., Kabeel A.E., Chamkha A., Athikesavan M.M., Sathyamurthy R., Kasi K. Recent advancements, technologies, and developments in inclined solar still-A comprehensive review. Environ. Sci. Pollut. Res. 2021, 28, 35346-35375.
10 [10] Mousa H., Naser J., Gujarathi A.M., Al-Sawafi S. Experimental study and analysis of solar still desalination using phase change materials. Energy Storage 2019, 26, 100959.
11 [11] Radhwan A.M. Transient performance of a stepped solar still with built-in latent heat thermal energy storage. Desalination 2004, 171, 61-76.
12 [12] Samuel D.H., Nagarajan P.K., Sathyamurthy R., El-Agouz S.A., Kannan E. Improving the yield of fresh water in conven-tional solar still using low cost energy storage material. Energy Convers. Manag. 2016, 112, 125-134.
13 [13] Modi K.V., Shukla D., Ankoliya D.B. A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles. Sol. Energy Eng. 2018, 141,
14 [14] Yu W., France D.M., Routbort J.L., Choi S.U.S. Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. Heat Transfer. Eng. 2008, 29, 432-460.
15 [15] Pordanjani A.H., Aghakhani S., Afrand M., Mahmoudi B., Mahian O., Wongwises S. An updated review on applica-tion of nanofluids in heat exchangers for saving energy. Energy Convers. Manag. 2019, 198, 111886.
16 [16] Hansen R.S., Murugavel K.K. Enhancement of integrated solar still using different new absorber configurations: An experimental approach. Desalination 2017, 422, 59-67.
17 [17] El-Sebaii A.A., Aboul-Enein S., El-Bialy E. Single basin solar still with baffle suspended absorber. Energy Convers. Manag. 2000, 41, 661-675. Nafey A., Abdelkader M., Abdelmotalip A., Mabrouk A. Enhancement of solar still productivity using floating perforated blackplate. Energy Convers. Manag 2002, 43, 937-946
18 [18] Panchal H., Nurdiyanto H., Sadasivuni K.K., Hishan S.S., Essa F.A., Khalid M., Dharaskar S., Shanmugan S. Experimental inves-tigation on the yield of solar still using manganese oxide nanoparticles coated absorber. Case Stud. Therm. Eng. 2021, 25, 100905.
19 [19] Bataineh K.M., Abbas M.A. Performance analysis of solar still integrated with internal reflectors and fins. Sol. Energy 2020, 205, 22-36.
20 [20] Xu Y., Liu D., Xiang H., Ren S., Zhu Z., Liu D., Xu H., Cui F., Wang W. Easily scaled-up photo-thermal membrane with struc-ture-dependent auto-cleaning feature for high-efficient solar desalination. Membr. Sci. 2019, 586, 222-230.
21 [21] Xu Y., Ma J., Liu D., Xu H., Cui F., Wang W. Origami system for efficient solar driven distillation in emergency water supply. Chem. Eng. 2019, 356, 869-876.
22 [22] Wu D., Qu D., Jiang W., Chen G., An L., Zhuang C., Sun Z. Self-floating nanostructured Ni–NiOx/Ni foam for solar thermal water evaporation. Mater. Chem. A 2019, 7, 8485-8490.
23 [23] Xu J., Wang Z., Chang C., Fu B., Tao P., Song C., Shang W., Deng T. Solar-driven interfacial desalination for simultaneous fresh-water and salt generation. Desalination 2020, 484.
Кутилмоқда