5

Ushbu maqolada qishloq xo‘jalik mahsulotlarini saqlash va sovutishda qayta
tiklanadigan energiya manbalari yordamida amalga oshirishning dolzarbligi, meva va
sabzavotlarni saqlash va sovutishda qayta tiklanuvchi energiyadan foydalanishning afzalligi va
kamchiliklari,

  • Internet ҳавола
  • DOI
  • UzSCI тизимида яратилган сана 15-09-2024
  • Ўқишлар сони 5
  • Нашр санаси 31-03-2023
  • Мақола тилиO'zbek
  • Саҳифалар сони86-98
Ўзбек

Ushbu maqolada qishloq xo‘jalik mahsulotlarini saqlash va sovutishda qayta
tiklanadigan energiya manbalari yordamida amalga oshirishning dolzarbligi, meva va
sabzavotlarni saqlash va sovutishda qayta tiklanuvchi energiyadan foydalanishning afzalligi va
kamchiliklari,

Муаллифнинг исми Лавозими Ташкилот номи
1 Ibragimov U.X. t.f.f.d., dots. QarMII
2 Ro'ziqulov G.Y. doktorant QarMII
3 Uzoqova Y.G. o'qituvchi QarMII
4 Amirqulov J.. magistrant QarMII
Ҳавола номи
1 https://review.uz/oz/post/selskoxozyaystvenne-reform-v-dinamike-infografiki.
2 https://www.agro.uz/ru/21-0000/.
3 Хушматов Н.С., Файзуллаева Т.Р. Қишлоқ хўжалиги маҳсулотларини қиш ва баҳор ойларида сақлашда кенг тарқалган усуллар таҳлили. // “Иқтисодиёт ва инновацион технологиялар” илмий электрон журнали. 2018, №2. 1-10 б.
4 https://kun.uz/news/2019/07/08/sovitgichlar-masalasi-bozorda-narx-tushishi-uchun-nimazarur.
5 www.engsolgroup.ru. Промышленное холодильное оборудование.
6 Курылев Е.С., Оносовский В.В., Русянцеы Ю.Д. Холодильные установки. – СПб.: Политехника, 2002. – 576 с.
7 E. Aridhi, M. Abbes, S. Maarouf, R. Mhiri, and A. Mami, “Pseudo bond graph model of thermal transfers sustained by ice quantity of a domestic refrigerator for energy saving application,” IEE J. Trans. Electric. Electron. Eng. 10, 308 (2015).
8 L. F. Cabeza and E. Ore, “Thermal energy storage for renewable heating and cooling systems,” Renewable Heating and Cooling (Elsevier, 2016), Chap. 7, pp. 139–179.
9 E. Aridhi, M. Abbes, S. Maarouf, R. Mhiri, and A. Mami, “Cooling performance and energy saving of a refrigeration cavity supported by an outside cold air flow controlled by a PID controller,” in 6th International Renewable Energy Congress - IREC’2015, Tunis (2015), pp. 1–6.
10 C. Negrao and C. Hermes, “Energy and cost savings in household refrigerating appliances: A simulation-based design approach,” Appl. Energy 88, 3051–3060 (2011).
11 Commission Europeenne, Systemes de Refroidissement Industriels (Commission Europeenne, 2001).
12 K. Harby, D. R. Gebaly, N. S. Koura, and Mohamed S. Hassan, “Performance improvement of vapor compression cooling systems using evaporative condenser: An overview,” Renewable Sustainable Energy Rev. 58, 347–360 (2016).
13 M.-H. Kim, H.-W. Dong, J.-Y. Park, and J.-W. Jeong, “Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell,” Appl. Energy 180, 446–456 (2016).
14 F. Ascione, N. Bianco, R. F. De Masi, F. de Rossi, and G. P. Vanoli, “Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season,” Appl. Energy 113, 990–1007 (2014).
15 W. Cheng and X. Yuan, “Numerical analysis of a novel household refrigerator with shapestabilized PCM (phase change material) heat storage condensers,” Energy J. 59, 265–276 (2013).
16 E. Gedik, E. Kılıc¸aslan, B. Acar, A. Erg €un, and E. Ozbas, “Experimental investigation of a household refrigerator performance using chimney-type condenser,” Arabian J. Sci. Eng. 41, 1691–1697 (2016).
17 A. C. Marques, G. F. Davies, G. G. Maidment, J. A. Evans, and I. D. Wood, “Novel design and performance enhancement of domestic refrigerators with thermal storage,” Appl. Therm. Eng. 63, 511–519 (2014).
18 V. Jain, G. Sachdeva, and S. S. Kachhwaha, “Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compressionabsorption integrated refrigeration system,” Energy 91, 816–832 (2015).
19 F. G. Arroyo-Cabanas, J. E. Aguillon-Martinez, J. J. Ambriz-Garcia, and G. Canizal, “Electric energy saving potential by substitution of domestic refrigerators in Mexico,” Energy Policy 37, 4737–4742 (2009).
20 J. Tao and S. Yu, “Implementation of energy efficiency standards of household refrigerator/freezer in China: Potential environmental and economic impacts,” Appl. Energy 88, 1890–1905 (2011).
21 Ekren O., Serdar C., Brad N., Ryan K., “Performance Evaluation of a Variable Speed DC Compressor,” International Journal of Refrigeration, Vol. 36, No.36, 2013. – p. 745-757.
22 McCarney S., Joanie R., Juliette A., Kristina L., John L., “Using Solar-Powered Refrigeration for Vaccine Storage Where Other Sources of Reliable Electricity are Inadequate or Costly,” Vaccine, Vol. 31, No. 51, pp. 6050– 6057, 2013.
23 Otanicar T., Robert A.T., Phelan P.E., “Prospects for Solar Cooling–An Economic and Environmental Assessment,” Solar Energy, Vol. 86, No. 5 pp. 1287–1299, 2012.
24 Sarbu L., Sebarchievici C., “Review of Solar Refrigeration and Cooling Systems,” Energy and Buildings, Vol. 67, pp. 286–297, 2013.
25 Daffllah K.O., Benghanem M., Alamri S.N., Joraid A.A., Al-Mashraqi A.A., Experimental Evaluation of Photovoltaic DC Refrigerator Under Diffrent Thermostat Settings,” Renewable Energy, Vol. 113, pp. 1150-1159, 2017.
26 N’Tsoukpoe K.E., Pierrès N.L., Luo L., “Numerical Dynamic Simulation and Analysis of a Lithium Bromide/Water Long-term Solar Heat Storage System,” Energy, Vol. 37, pp. 346- 358, 2012
27 Lui L., Edem N.K., Nolwenn L.P., Lingai L., “Evaluation of a Seasonal Storage System of Solar Energy for House Heating Using Different Absorption Couples,” Energy Conversion and Management, Vol. 52, pp. 2427–2436, 2011.
28 N’Tsoukpoe K.E., Pierrès N.L., Luo L., “Experimentation of a LiBr-H2O Absorption Process for Long-term Solar Thermal Storage: Prototype Design and First Results,” Energy, Vol. 53, pp. 179-198, 2013.
29 N’Tsoukpoe K.E., Pierrès N.L., Luo L., Mangin D., “Thermodynamic Study of a LiBr – H2O Absorption Process for Solar Heat Storage with Crystallization of the Solution,” Solar Energy, Vol. 104, pp. 2-15, 2014.
30 Perier M.M. and Pierrès N. L. “Modeling and Analysis of Energetic and Exergetic Effiencies of a LiBr/H 2O Absorption Heat Storage System for Solar Space Heating in Buildings,” Solar Energy Efficiency, Vol., pp. 1-19, 2015.
31 Zhang X., Li M., Shi W., Wang B., Li X., “Experimental Investigation on Charging and Discharging Performance of Absorption Thermal Energy Storage System,” Energy Conversion and Management, Vol. 85, pp. 425-434, 2014.
32 Fumey B., Weber R., Gantenbein P., DaguenetFrick X., Williamson T., Dorer V., “Development of a Closed Sorption Heat Storage Prototype,” Energy Procedia, Vol. 46, pp. 134–141, 2014.
33 Fumey B., Weber R., Gantenbein P., DaguenetFrick X., Williamson T., Dorer V., “Closed Sorption Heat Storage Based on Aqueous Sodium Hydroxide,” Energy Procedia, Vol. 48, pp. 337–346, 2014.
34 Fumey B., Weber R., Gantenbein P., DaguenetFrick X., Williamson T., Dorer V., “Operation Results of a Closed Sorption Heat Storage Prototype,” Energy Procedia, Vol. 73, pp. 324– 330, 2015.
35 Xu S.M., Huang X.D., Du R., “An Investigation of the Solar Powered Absorption Refrigeration System with Advanced Energy Storage Technology,” Solar Energy, Vol. 85, pp. 1794–1804, 2011.
36 Freni A., Santori G., Sapienza A., and Gulli G., “Solar Powered Solid Adsorption System for ColdStorage Applications,” 16th CIRIAF National Congress, at Assisi, Volume: ISBN 978- 88-6074-755-6, April 2016.
37 Hossain A. and Talukdar Sh. Development and Performance Evaluation of a Solar Energy based Portable Micro-Cold Storage // DUET Journal. Volume 5, Issue 1, June 2019. – p. 57- 66.
38 Talukdar S., Afroz H.M.M., Hossain M. A., Aziz M.A., Hossain M. M. “Heat transfer enhancement of charging and discharging of phase change materials and size optimization of a latent thermal energy storage system for solar cold storage application”, Journal of Energy Storage, Vol. 24, 2019.
39 Руденко М.Ф., Шипулина Ю.В., Каримов М.Ш., Руденко А.М. Повышение эффективности работы гелиоэнергетических холодильных установок адсорбционного типа // Вестник Дагестанского государственного технического университета. Технические науки. Том 46, №4, 2019. – с. 32-41.
40 Islam Md.P. and Morimoto T., “A new zero energy cool chamber with a solar-driven adsorption refrigerator,” Renewable Energy 72, 367–376 (2014).
41 Коршунов А.Б., Коршунов Б.П. Энергосберегающая холодильная камера с использованием природного холода // Техника и технологии в животноводстве №2(38), 2020. – с. 23-27.
Кутилмоқда