Vertikal drenaj tizimlari nasosli va quvurli quduqlardan foydalanadigan drenaj tizimlardir. Maqolada vertikal drenaj samaradorligini oshirish uchun oqimchali nasosdan foydalanish taklif etilgan. Oqimchali nasosdagi gi dravlik jarayonlarni o‘rganish uchun laboratoriya qurilmasi tayyorlandi va tadqiqotlar olib borildi. O‘tkazilgan tadqiqotlarda oqimchali nasosdagi so‘rish jarayoniga haydash quvuri diametrining ta’siri o‘rganildi. Haydash quvuri d = 40 mm bo‘lganda, injeksiya koeffitsiyentining maksimal qiymati 50 %ga yetdi. Laboratoriya tadqiqotlari natijalari tahlili asosida taklif etilgan vertikal drenaj tizimida qo‘llaniladigan oqimchali nasosning so‘rish qobiliyati va so‘rish balandligini aniqlash bo‘yicha bog‘lanish olindi.
Vertikal drenaj tizimlari nasosli va quvurli quduqlardan foydalanadigan drenaj tizimlardir. Maqolada vertikal drenaj samaradorligini oshirish uchun oqimchali nasosdan foydalanish taklif etilgan. Oqimchali nasosdagi gi dravlik jarayonlarni o‘rganish uchun laboratoriya qurilmasi tayyorlandi va tadqiqotlar olib borildi. O‘tkazilgan tadqiqotlarda oqimchali nasosdagi so‘rish jarayoniga haydash quvuri diametrining ta’siri o‘rganildi. Haydash quvuri d = 40 mm bo‘lganda, injeksiya koeffitsiyentining maksimal qiymati 50 %ga yetdi. Laboratoriya tadqiqotlari natijalari tahlili asosida taklif etilgan vertikal drenaj tizimida qo‘llaniladigan oqimchali nasosning so‘rish qobiliyati va so‘rish balandligini aniqlash bo‘yicha bog‘lanish olindi.
Вертикальные дренажные системы – это такие системы, в которых используются насосы и буровые скважины. В статье предлагается использовать струйный насос для повышения эффективности вертикального дренажа. Была изготовлена лабораторная установка и проведено исследование по изучению гидравлических процессов в струйном насосе. В проведённом исследовании изучена зависимость процесса всасывания в струйном насосе от диаметра напорной трубы. Коэффициент инжекции достиг максимального значения 50 % при диаметре напорного трубопровода d = 40 мм. На основе анализа результатов проведённых лабораторных исследований доказана связь показателей всасывающей способности и высоты всасывания струйного насоса, используемого в предлагаемой системе вертикального дренажа.
Vertical drainage systems are systems that use pumps and tube wells. The article proposes the use of a jet pump to boost the efficiency of vertical drainage. A laboratory equipment was used study the process of using a jet pump. The research examined the impact of the pressure pipe’ diameter on the suction process in a jet pump. The injection coefficient reached a maximum value of 50% at the efficiency of the flow meter d = 40 mm in pressure pipe. Based on statistical analysis of laboratory research findings, a relationship was retrieved to determine the suction capacity and suction height of the jet pump used in the proposed vertical drainage system.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Otaxonov M.Y. | texnika fanlari boʻyicha falsafa doktori (PhD), dotsent | “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti |
2 | Raximov Q.T. | texnika fanlari boʻyicha falsafa doktori (PhD), dotsent | Toshkent davlat transport universiteti |
3 | Sultonov R.S. | doktorant | “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqot universiteti |
№ | Ҳавола номи |
---|---|
1 | Abduraimova, D. A., Otakhonov, M. Y., Ibragimova, Z. I., & Allayorova, D. S. (2023). Effect of deformation processes on hydraulic efficiency in open drainages. IOP Conf. Series: Earth and Environmental Science, 1231, 012066. https://doi.org/10.1088/1755-1315/1231/1/012066. |
2 | Abduraimova, D., Otakhonov, M., Jonkobilov, U., & Melikuziev, S. (2023). Digging and cleaning collectors using excavators equipped with innovative automatic control navigator. E3S Web of Conferences, 390. EDP Sciences. |
3 | Akhmedov, I., & Mirkhasilova, Z. (2021). Construction of vertical drainage wells using corrosion resistant materials. E3S Web of Conferences CONMECHYDRO, 264, 04016. https://doi.org/10.1051/ e3sconf/20212640401 |
4 | Arifjanov, A. M., Rahimov, Q. T., & Abduraimova, D. A. (2017). Hydrotransport of exceptional flow in pipelines with various pulls. European Science Review, 124–126. Austria, Vienna/ |
5 | Arifjanov, A., Samiyev, L., Xoshimov, S., Shaymardanov, S., & Tadjiboyev, S. (2023). Transport capacity of flow in earthline channels. E3S Web of Conferences (CONMECHYDRO), 401, 01020. https:// doi.org/10.1051/e3sconf/202340101020 |
6 | Boehmer, W. K., & Boonstra, J. (1994). Tubewell Drainage Systems. In H. P.Ritzema (Ed.). Drainage Principles and Applications (chapter 22, pp. 931–964). International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. |
7 | Cunningham, R. G. (1995). Liquid jet pumps for two-phase flows. ASME J. Fluids Engrg., 117, 309–316. |
8 | Cunningham, R. G., & River, W. (1957). Jet-pump theory and performance with fluid of high viscosity. Trans. ASME, 79, 1807–1820. |
9 | El-Sawaf, A., Halawa, M. A., Younes, M. A., & Teaima, I. R. (2011). Study of the different parameters that influence on the performance of water jet pump. Fifteenth International Water Technology Conference IWTC, 15. Alexandria, Egypt. |
10 | Gasanov, S. T. (2012). Vakuum-skvazhiny i ikh raschyot [Vacuum wells and their calculation]. (In Russian). Prospects for Science, 7 (34). |
11 | Gosline, J. E., & O‘Brien, M. P. (1934). The water jet pump. Univ. of Calif. Publ. in Engrg., 3 (3), 167–190. |
12 | Grupping, A. W., Coppes, J. L. R., & Groot, J. G. (1988, February). Fundamentals of oilwell jet pumping. SPE Production Engrg., 9–14. |
13 | Grupping, A. W., Coppes, J. L. R., & Groot, J. G. (1988, February). Fundamentals of oilwell jet pumping. SPE Production Engrg., 9–14. |
14 | Hatziavramidis, D. T. (1991, November). Modeling and design of jet pumps. SPE Production Engrg., 413–419. |
15 | Latipov, N., Abduraimova, D., Ibragimova, Z., Otakhonov, M., & Hamdamov, M. (2023). Numerical simulation of combustion processes. E3S Web of Conferences, 401, 03072. EDP Sciences. |
16 | Li, H. (1998). Performance Study of a Jet Pump. M. Engr. thesis, National Univ. of Singapore, Singapore. |
17 | Rakhimov, K., & Sultanov, R. (2023). Use of jet pump in vertical drainage systems. E3S Web of Conferences (CONMECHYDRO), 401, 03074. https://doi.org/10.1051/e3sconf/202340101048 |
18 | Rakhimov, K., Melikuziyev, S., & Sultanov, R. (2023). Coefficient of hydraulic friction of plastic pipes. E3S Web of Conferences (CONMECHYDRO), 401, 01042. https://doi.org/10.1051/ e3sconf/202340101042 |
19 | Rakhimov, Q., Ahmedkhodjaeva, I., Rakhimov, A., Abduraimova, D., & Latipov, N. (2022). Influence of Kinematic Flow Parameters on Vacuum in Jetters. AIP Conference Proceedings, 2432, 030068. |
20 | Winoto, S.H., Li, H., & Shah, D. A. (2000). Efficiency of Jet Pumps. Journal of Hydraulic Engineering, 126 (2). https://doi.org/doi.org/10.1061/(ASCE)0733-9429(2000)126:2(150) |
21 | Xoshimov, S., Atakulov, D., Yalgashev, O., Komilov, S., & Boykulov, J. (2023). Evaluation of sedimentation of water reservoirs with modern technologies. E3S Web of Conferences, 365. https://doi. org/10.1051/e3sconf/202336503033 |