8

This study investigates efficacy of laser surface hardening as a method to enhance the wear resistance of metal gears, comparing it with traditional hardening techniques such as induction and flame hardening. The laser surface hardening process involves using a high-energy laser beam to rapidly heat the gear surface, resulting in microstructural changes that boost hardness and wear resistance. Experiments were made using two common gear steels, JIS-SCM415 and JIS-S45C, with the laser parameters optimized to achieve the desired hardness profile. Findings showed that the best hardening was achieved with a laser power of 1 000 W, scanning speed of 100mm/s, and a spot size of 1 mm, resulting in a surface hardness of 672 HV and a core hardness of 502 HV. Wear testing indicated that the wear rate of laserhardened gears was comparable to new conventional gears, with a weight loss of 10-12 mg/hr. The study demonstrates that laser surface hardening can significantly improve the wear resistance of gears, with minimal distortion and precise control over the hardened depth, making it a promising alternative to conventional hardening methods for enhancing gear longevity and performance.

  • Internet ҳавола
  • DOI
  • UzSCI тизимида яратилган сана 21-11-2024
  • Ўқишлар сони 8
  • Нашр санаси 26-08-2024
  • Мақола тилиIngliz
  • Саҳифалар сони46-56
English

This study investigates efficacy of laser surface hardening as a method to enhance the wear resistance of metal gears, comparing it with traditional hardening techniques such as induction and flame hardening. The laser surface hardening process involves using a high-energy laser beam to rapidly heat the gear surface, resulting in microstructural changes that boost hardness and wear resistance. Experiments were made using two common gear steels, JIS-SCM415 and JIS-S45C, with the laser parameters optimized to achieve the desired hardness profile. Findings showed that the best hardening was achieved with a laser power of 1 000 W, scanning speed of 100mm/s, and a spot size of 1 mm, resulting in a surface hardness of 672 HV and a core hardness of 502 HV. Wear testing indicated that the wear rate of laserhardened gears was comparable to new conventional gears, with a weight loss of 10-12 mg/hr. The study demonstrates that laser surface hardening can significantly improve the wear resistance of gears, with minimal distortion and precise control over the hardened depth, making it a promising alternative to conventional hardening methods for enhancing gear longevity and performance.

Ўзбек

Mazkur maqolada sirtni lazerli mustahkamlash (SLM) samaradorligi metall tishli g‘ildiraklarda yeyilishga bardoshlilikni oshirish usuli sifatida tadqiq etilgan bo‘lib, ushbu usul an’anaviy toblash va induksion usullar bilan taqqoslangan. SLM jarayonida tishli g‘ildirak sirtini tezkor isitish uchun yuqori energiyali lazer nurlaridan foydalaniladi. Buning natijasida qattiqlik va yeyilishga bardoshlilikni oshiruvchi mikrostrukturaviy o‘zgarishlar sodir bo‘ladi. Tajribalar ikkita JIS-SCM415 va JIS-S45C markali oddiy po‘lat tishli g‘ildirak, kerakli qattiqlik profiliga erishish uchun optimallashtirilgan lazer parametrlari yordamida o‘tkazildi. Natijalar shuni ko‘rsatdiki, eng yaxshi qattiqlashuv 1 000 Vt lazer quvvati, 100 mm/sekund skanerlash tezligi va 1 mm nuqta o‘lchami bilan olib borilganda, sirt qattiqligi 672 HV va yadro qattiqligi 502 HV miqdorga erishildi. Yeyilishga bardoshlilik sinovlarida lazerli mustahkamlangan tishli g‘ildiraklarning yeyilish tezligi yangi an’anaviy usulda ishlov berilgan tishli g‘ildiraklar bilan taqqoslanganda, vazn yo‘qotish soatiga 10–12 mg miqdorni tashkil etdi. Tadqiqot natijalariga ko‘ra, lazerli ishlov berish tishli g‘ildiraklarning yeyilishga bardoshliligini sezilarli darajada yaxshilaydi, minimal buzilish va qattiqlashish chuqurligini aniq nazorat qilish imkonini beradi. Bu esa, o‘z navbatida, tishli mexanizmlarning uzoq ishlashi va yaroqlilik muddatini oshirish uchun an’anaviy mustahkamlash usullariga qaraganda istiqbolli usullardan sanaladi.

Русский

В данном исследовании изучается эффективность лазерной поверхностной закалки как метода повышения износостойкости металлических зубчатых колёс в сравнении с традиционными методами, такими как индукционная и пламенная закалка. Процесс лазерной поверхностной закалки предполагает использование высокоэнергетического лазерного луча для быстрого нагрева поверхности шестерни, что приводит к микроструктурным изменениям, повышающим твёрдость и износостойкость. Эксперименты проводились с использованием двух распространённых зубчатых сталей – JIS-SCM415 и JIS-S45C, при этом параметры лазера оптимизировались для достижения желаемого профиля твёрдости. Результаты показали, что наилучшая закалка была достигнута при мощности лазера 1 000 Вт, скорости сканирования 100 мм/сек. и размере пятна 1 мм, что привело к поверхностной твёрдости 672 HV и твёрдости сердцевины 502 HV. Испытания на износ показали, что скорость износа шестерён, закалённых лазером, была сопоставима с новыми обычными шестернями, а потеря массы составляла 10-12 мг/ч. Исследование показывает, что лазерная поверхностная закалка может значительно повысить износостойкость зубчатых колёс при минимальных искажениях и точном контроле глубины закалки, что делает его перспективной альтернативой традиционным методам закалки для повышения долговечности и производительности зубчатых колёс.

Ҳавола номи
1 Anusha, E., Kumar, A., & Shariff, S. M. (2020). A novel method of laser surface hardening treatment inducing different thermal processing condition for Thin-sectioned 100Cr6 steel. Optics & Laser Technology, 125, 106061. https://doi.org/10.1016/j.optlastec.2020.106061
2 Arulvel, S., Desilva, W. R. D., Jain, A., Kandasamy, J., & Singhal, M. (2023). Laser processing techniques for surface property enhancement: Focus on material advancement. Surfaces and Interfaces, 42, 103293. https://doi.org/10.1016/j.surfin.2023.103293
3 Beauson, J., Laurent, A., Rudolph, D.P., & Pagh J. J. (2022). The complex end-of-life of wind turbine blades: A review of the European context. Renewable and Sustainable Energy Reviews, 155, 111847. https://doi.org/10.1016/j.rser.2021.111847
4 Daroonparvar, M., Bakhsheshi-Rad, H. R., Saberi, A., Razzaghi, M., Kasar, A. K., Ramakrishna, S., Menezes, P. L., Misra, M., Ismail, A. F., Sharif, S., & Berto, F. (2022). Surface modification of magnesium alloys using thermal and solid-state cold spray processes: Challenges and latest progresses. Journal of Magnesium and Alloys, 10(8), 2025-2061. https://doi.org/10.1016/j.jma.2022.07.012
5 Hazzan, K. E., Pacella, M., & See, T. L. (2021). Laser Processing of Hard and Ultra-Hard Materials for Micro-Machining and Surface Engineering Applications. Micromachines, 12(8), 895. https://doi. org/10.3390/mi12080895
6 Hou, N., Ding, N., Qu, S., Guo, W., Liu, L., Xu, N., Tian, L., Xu, H., Chen, X., Zaïri, F., & Lawrence, W. C.-M. (2022). Failure modes, mechanisms and causes of shafts in mechanical equipment. Engineering Failure Analysis, 136, 106216. https://doi.org/10.1016/j.engfailanal.2022.106216
7 Hu, Y., Watson, M., Maiorino, M., Zhou, L., Wang, W.J., Ding, H. H., Lewis, R., Meli, E., Rindi, A., Liu, Q. Y., & Guo, J. (2021). Experimental study on wear properties of wheel and rail materials with different hardness values. Wear, 477, 203831. https://doi.org/10.1016/j.wear.2021.203831
8 Küçük, Y., Altaş, E., & Topcu, M. E. (2023). A comparative analysis of the effect of laser surface treatment on the dry sliding wear behavior of ductile cast irons with different microstructures. Optik, 274, 170540. https://doi.org/10.1016/j.ijleo.2023.170540
9 Lv, Y., Cui, B., & Sun, Z. (2024). Investigation on wear behavior for SUS420 steel gear based on discrete laser surface melting. Optics & Laser Technology, 170, 110251. https://doi.org/10.1016/j.optlastec.2023.110251
10 Moradi, M., Karami, M. M., & Shamsborhan, M. (2020). How the laser beam energy distribution effect on laser surface transformation hardening process; Diode and Nd:YAG lasers. Optik, 204, 163991. https://doi.org/10.1016/j.ijleo.2019.163991
11 Moradi, M., Sharif, S., Jamshidi N. S., & Karami, M. M. (2020). Laser surface hardening of AISI 420 steel: Parametric evaluation, statistical modeling and optimization. Optik, 224, 165666. https:// doi.org/10.1016/j.ijleo.2020.165666
12 Muthukumaran, G., & Dinesh, B. P. (2021). Laser transformation hardening of various steel grades using different laser types. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 103. https://doi.org/10.1007/s40430-021-02854-4
13 Podgornik, B. (2022). Adhesive Wear Failures. Journal of Failure Analysis and Prevention, 22(1), 113-138. https://doi.org/10.1007/s11668-021-01322-4
14 Politis, D. J., Politis, N. J., & Lin, J. (2021). Review of recent developments in manufacturing lightweight multi-metal gears. Production Engineering, 15(2), 235-262. https://doi.org/10.1007/s11740-020-01011-5
15 Rohrmoser, A., Bode, C., Schleich, B., Hagenah, H., Wartzack, S., & Merklein, M. (2021). Influence of Metal Gear Tooth Geometry on Load and Wear within Metal-Polymer Gear Pairs. Applied Sciences, 12(1), 270. https://doi.org/10.3390/app12010270
16 Ruiz-Ponce, G., Arjona, M.A., Hernandez, C., & Escarela-Perez, R. (2023). A Review of Magnetic Gear Technologies Used in Mechanical Power Transmission. Energies, 16(4), 1721. https://doi. org/10.3390/en16041721
17 Singh, A. K., Kumar, S., Agrawal, B. N., & Nain, P. K. S. (2023). Design and Analysis of Spur Gear, Helical Gear, and Bevel Gear by Using ANSYS. In R. M. Singari, P. K. Jain, & H. Kumar (Eds.). Advances in Manufacturing Technology and Management, Lecture Notes in Mechanical Engineering (pp. 641-650). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9523- 0_70
18 Xiang, D., Liu, Y., Yu, T., Wang, D., Leng, X., Wang, K., Liu, L., Pan, J., Yao, S., & Chen, Z. (2024). Review on wear resistance of laser cladding high-entropy alloy coatings. Journal of Materials Research and Technology, 28, 911-934. https://doi.org/10.1016/j.jmrt.2023.11.138
19 Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent Progress on WearResistant Materials: Designs, Properties, and Applications. Advanced Science, 8(11), 2003739. https:// doi.org/10.1002/advs.202003739
20 Zhang, N., Guo, S., He, G., Jiang, B., Zhou, L., Chen, Y., & Liu, Y. (2022). Failure analysis of the carburized 20MnCr5 gear in fatigue working condition. International Journal of Fatigue, 161, 106938. https://doi.org/10.1016/j.ijfatigue.2022.106938
21 Zhang, T., Zhang, C., Zhang, L., & Li, J. (2021). Evolution of thermal stress in millisecond laser manufacturing. Optics Communications, 482, 126592. https://doi.org/10.1016/j.optcom.2020.126592
Кутилмоқда