Hozirgi kunda suv tanqisligi dunyo bo‘ylab dolzarb muammolardan biri
sanaladi. Sanoat oqova suvlarini qayta ishlashda resurs samarador texnologiyalarni
qo‘llash muhim ahamiyat kasb etmoqda. Ushbu tadqiqotda sanoat oqova suvlarini
tozalash jarayonini intellektual boshqarish masalasi o‘rganilgan. Dastlab ion-
almashinish smolalari yordamida oqova suvlarni tozalash qurilmasi ishlab chiqildi va
Qo‘ng‘irot soda zavodidan olingan sanoat oqova suvlari aralashmasi orqali sinovdan
o‘tkazildi. Olingan natijalar asosida suvning qattiqligi (H) va umumiy erigan
minerallar miqdori (TDS)ni oqova suvning sarfi orqali avtomatik boshqarish tizimi
ishlab chiqildi. Boshqarish tizimi sifatida Adaptiv Neyro-Noqat’iy Mantiqiy Xulosa
Tizimi (ANFIS) qo‘llandi. Natijalar shuni ko‘rsatdiki, ANFIS asosida boshqarilgan
tizim an’anaviy PID va noqat’iy mantiqiy boshqaruv usullariga nisbatan rostlash
vaqtini 25–30 %ga qisqartirish va statik xatoliklarni 12 %ga kamaytirish imkonini
beradi. Bu orqali suv sarfini rostlovchi servo klapan uchun sarflanadigan energiya
1,3 %gacha kamaytirildi. Bundan tashqari, jarayonni real vaqt rejimida monitoring
qilish va avtomatik boshqarishni amalga oshirish maqsadida MasterSCADA 4D
platformasi asosida dasturiy ta’minot ishlab chiqildi. Ushbu tizim orqali suv sifati
parametrlarini (H va TDS) uzluksiz kuzatish va optimallashtirish imkoniyati yaratildi.
Hozirgi kunda suv tanqisligi dunyo bo‘ylab dolzarb muammolardan biri
sanaladi. Sanoat oqova suvlarini qayta ishlashda resurs samarador texnologiyalarni
qo‘llash muhim ahamiyat kasb etmoqda. Ushbu tadqiqotda sanoat oqova suvlarini
tozalash jarayonini intellektual boshqarish masalasi o‘rganilgan. Dastlab ion-
almashinish smolalari yordamida oqova suvlarni tozalash qurilmasi ishlab chiqildi va
Qo‘ng‘irot soda zavodidan olingan sanoat oqova suvlari aralashmasi orqali sinovdan
o‘tkazildi. Olingan natijalar asosida suvning qattiqligi (H) va umumiy erigan
minerallar miqdori (TDS)ni oqova suvning sarfi orqali avtomatik boshqarish tizimi
ishlab chiqildi. Boshqarish tizimi sifatida Adaptiv Neyro-Noqat’iy Mantiqiy Xulosa
Tizimi (ANFIS) qo‘llandi. Natijalar shuni ko‘rsatdiki, ANFIS asosida boshqarilgan
tizim an’anaviy PID va noqat’iy mantiqiy boshqaruv usullariga nisbatan rostlash
vaqtini 25–30 %ga qisqartirish va statik xatoliklarni 12 %ga kamaytirish imkonini
beradi. Bu orqali suv sarfini rostlovchi servo klapan uchun sarflanadigan energiya
1,3 %gacha kamaytirildi. Bundan tashqari, jarayonni real vaqt rejimida monitoring
qilish va avtomatik boshqarishni amalga oshirish maqsadida MasterSCADA 4D
platformasi asosida dasturiy ta’minot ishlab chiqildi. Ushbu tizim orqali suv sifati
parametrlarini (H va TDS) uzluksiz kuzatish va optimallashtirish imkoniyati yaratildi.
В настоящее время нехватка воды является одной из
актуальных проблем по всему миру. Важное значение приобретает
применение ресурсосберегающих технологий при переработке
промышленных сточных вод. В данном исследовании рассмотрена задача
интеллектуального управления процессом очистки сточных вод. На
первом этапе была разработана установка для очистки сточных вод
с использованием ионообменных смол, которая прошла испытания на
основе смеси сточных вод, полученных с Кунградского содового завода. На
основе полученных данных была разработана автоматическая система
управления, регулирующая параметры жёсткости воды (H) и содержания
общего количества растворённых веществ (TDS) в зависимости от расхода
сточных вод. В качестве системы управления использовалась адаптивная
нейро-нечёткая система логического вывода (ANFIS). Результаты показали,
что система, управляемая на основе ANFIS, позволяет сократить время
настройки на 25–30 % и уменьшить статические ошибки на 12 % по
сравнению с традиционными PID- и нечёткими системами управления.
При этом энергопотребление сервоклапана, регулирующего подачу воды,
снизилось до 1,3 %. Кроме того, для мониторинга процесса в реальном
времени и реализации автоматического управления было разработано
программное обеспечение на платформе MasterSCADA 4D. С помощью этой системы обеспечивается непрерывный контроль и оптимизация
параметров качества воды (H и TDS).
Nowadays, water scarcity is one of the most pressing global issues in the
world. The application of resource-efficient technologies in the treatment of industri-
al wastewater is of significant importance. This study focuses on the intelligent con-
trol of the industrial wastewater treatment process. Initially, we developed and tested
a wastewater treatment device using ion-exchange resins on a mixture of industrial
wastewater from the Kungrad soda plant. Based on the obtained results, an automat-
ic control system was designed to regulate water hardness (H) and total dissolved
solids (TDS) based on the wastewater flow rate. The Adaptive Neuro-Fuzzy Inference
System (ANFIS) was implemented as the control system. The results demonstrated
that the ANFIS-based control system reduces adjustment time by 25–30% and de-
creases static error by 12% compared to conventional PID and fuzzy logic control
methods. This led to a reduction of up to 1.3% in the energy consumption of the servo
valve that regulates water flow. Additionally, to enable real-time monitoring and au-
tomatic control of the process, software was developed based on the MasterSCADA
4D platform. This system provides continuous monitoring and optimization of water
quality parameters (H and TDS).
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Usmanov . . | Аvtоmаtlаshtirish vа rаqаmli bоshqаruv” kаfedrаsi mudiri | Toshkent kimyo- texnologiya instituti |
2 | Eshbobayev J.A. | 1katta o‘qituvchi | Toshkent kimyo-texnologiya instituti |
3 | Xamidov B. . | texnika fanlari nomzod | Toshkent kimyo-texnologiya instituti |
№ | Ҳавола номи |
---|---|
1 | Ahmed, F. E., Hashaikeh, R., Diabat, A., & Hilal, N. (2019). Mathematical and optimization modelling in desalination: State-of-the-art and future direction. Desalination, 469, 114092. https://doi. org/10.1016/j.desal.2019.114092 |
2 | Ahmed, F. E., Khalil, A., & Hilal, N. (2021). Emerging desalination technologies: Current status, challenges and future trends. Desalination, 517, 115183. https://doi.org/10.1016/j.desal.2021.115183 |
3 | Aldair, A. A., Obed, A. A., & Halihal, A. F. (2018). Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system. Renewable and Sustainable Energy Reviews, 82, 2202–2217. https://doi.org/10.1016/j.rser.2017.08.071 |
4 | Almasoudi, S., & Jamoussi, B. (2024). Desalination technologies and their environmental impacts: A review. Sustainable Chemistry One World, 1, 100002. https://doi.org/10.1016/ j.scowo.2024.100002 |
5 | Ayaz, M., Namazi, M. A., Din, M. A. U., Ershath, M. I. M., Mansour, A., & Aggoune, el-H. M. (2022). Sustainable seawater desalination: Current status, environmental implications and future expectations. Desalination, 540, 116022. https://doi.org/10.1016/j.desal.2022.116022 |
6 | Bobat, A., Gezgin, T., & Aslan, H. (2015). The SCADA system applications in management of Yuvacik Dam and Reservoir. Desalination and Water Treatment, 54 (8), 2108–2119. https://doi.org/ 10.1080/19443994.2014.933615 |
7 | Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques – A review of the opportunities for desalination in agriculture. Desalination, 364, 2–16. https://doi.org/10.1016/j.desal.2015.01.041 |
8 | Curto, D., Franzitta, V., & Guercio, A. (2021). A Review of the Water Desalination Technologies. Applied Sciences, 11 (2), 670. https://doi.org/10.3390/app11020670 |
9 | Darre, N. C., & Toor, G. S. (2018). Desalination of water: A review. Current Pollution Reports, 4 (2), 104–111. https://doi.org/10.1007/s40726-018-0085-9 |
10 | Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing �low data. Environmental Monitoring and Assessment, 166 (1), 421–434. https://doi.org/10.1007/s10661-009-1012-8 |
11 | Eshbobaev, J., Norkobilov, A., Turakulov, Z., Khamidov, B., & Kodirov, O. (2023). Field trial of solar-powered ion-exchange resin for the industrial wastewater treatment process. Engineering Proceedings, 37 (1), Article 1. https://doi.org/10.3390/ECP2023-14626 |
12 | Eshbobaev, J., Norkobilov, A., Usmanov, K., Khamidov, B., Kodirov, O., & Avezov, T. (2024). Control of wastewater treatment processes using a fuzzy logic approach. Engineering Proceedings, 67 (1), Article 1. https://doi.org/10.3390/engproc2024067039 |
13 | Ghazi, Z. M., Rizvi, S. W. F., Shahid, W. M., Abdulhameed, A. M., Saleem, H., & Zaidi, S. J. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination, 542, 116063. https://doi.org/10.1016/j.desal.2022.116063 |
14 | Guerra, M. I. S., De Araújo, F. M. U., De Carvalho Neto, J. T., & Vieira, R. G. (2024). Survey on adaptive neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy Systems, 15 (2), 505–541. https://doi.org/10.1007/s12667-022-00513-8 |
15 | kun.uz. (2025, February 27). 2050 yilga borib O‘zbekistonda suv tanqisligi 15-25 foizga yetishi mumkin [By 2050, water scarcity in Uzbekistan may reach 15-25 percent]. (In Uzbek). Kun.uz. https:// kun.uz/news/2024/06/20/2050-yilga-borib-ozbekistonda-suv-tanqisligi-15-25-foizga-yetishi- mumkin |
16 | Ministry of Water Management of the Republic of Uzbekistan (2025, February 27). https://gov. uz/suvchi |
17 | Osman, F. A., Hashem, M. Y. M., & Eltokhy, M. A. R. (2022). Secured cloud SCADA system implementation for industrial applications. Multimedia Tools and Applications, 81 (7), 9989–10005. https://doi.org/10.1007/s11042-022-12130-9 |
18 | ‘O‘zsuvta’minot’ Joint-Stock Company. (2025, February 27). https://uzsuv.uz/ru/posts/844 |
19 | Vijayakumar, G., Rajkumar, M., Chandar, N. R., Selvakumar, P., & Duraisamy, R. (2024). Environmentally friendly TDS removal from wastewater by electrochemical ion exchange batch-type recirculation (EIR) technique. Environmental Science: Water Research & Technology, 10 (4), 826–835. https://doi.org/10.1039/D3EW00793F |
20 | Win, K. T. Z., & Tun, H. M. (n.d.). Design and implementation of SCADA system based power distribution for primary substation. |
21 | Yusupbekov, N. R., & Avazov, Y. S. (2022). Method of intelligent control of the process of rectification of multicomponent mixtures. Technical Science and Innovation, (3), 148–154. https:// btstu.researchcommons.org/journal/vol2022/iss3/8/ |