Ushbu maqolada sulfidli mis rudalarini boyitish jarayoni
samaradorligini oshirish usullari tahlil qilingan. Buning uchun bo‘tana (suvli
aralashma) tarkibida mikro va nano o‘lchamdagi pufakchalar hosil qilish usuli
qo‘llangan. Mazkur yondashuv mayda zarrali minerallarning ajralish sifatini
yaxshilaydi va kimyoviy reagentlar sarfini kamaytirishga yordam beradi. Tadqiqot
davomida bosimni pasaytirish (depressurizatsiya) orqali bo‘tana tarkibidagi gazni
chiqarish natijasida hosil bo‘ladigan mikro-nano pufakchalarning xususiyatlari va
kollektor (kimyoviy reagent) ta’siri o‘rganilgan. Mikroflotatsiya tajribalari shuni
ko‘rsatadiki, oldindan havosizlantirish jarayoni xalkopirit minerali ajralishini
sezilarli darajada yaxshilaydi. Shuningdek, mikro-nano pufakchalar hosil
bo‘lgandan keyin kollektor minerallarga emas, balki ushbu pufakchalar yuzasiga
adsorbsiyalanadi. Bu esa mayda xalkopirit zarrachalari birikishini osonlashtirib,
flotatsiya jarayonida ularning katta pufakchalarga yopishish ehtimolini oshiradi.
Bundan tashqari, natriy dietil ditiokarbamat kollektorining xalkopirit minerali
yuzasiga adsorbsiya bosim pasaygandan keyin ham saqlanib qoladi. Shunday
qilib, mikro-nano pufakchalar kollektor miqdori kamaygan taqdirda ham mayda
xalkopirit zarrachalari flotatsiyasiga ijobiy ta’sir ko‘rsatadi. Ushbu tadqiqot mineral
boyitish jarayonlarida mikro-nano pufakchalar ahamiyatini chuqurroq tushunishga
yordam beradi.
Ushbu maqolada sulfidli mis rudalarini boyitish jarayoni
samaradorligini oshirish usullari tahlil qilingan. Buning uchun bo‘tana (suvli
aralashma) tarkibida mikro va nano o‘lchamdagi pufakchalar hosil qilish usuli
qo‘llangan. Mazkur yondashuv mayda zarrali minerallarning ajralish sifatini
yaxshilaydi va kimyoviy reagentlar sarfini kamaytirishga yordam beradi. Tadqiqot
davomida bosimni pasaytirish (depressurizatsiya) orqali bo‘tana tarkibidagi gazni
chiqarish natijasida hosil bo‘ladigan mikro-nano pufakchalarning xususiyatlari va
kollektor (kimyoviy reagent) ta’siri o‘rganilgan. Mikroflotatsiya tajribalari shuni
ko‘rsatadiki, oldindan havosizlantirish jarayoni xalkopirit minerali ajralishini
sezilarli darajada yaxshilaydi. Shuningdek, mikro-nano pufakchalar hosil
bo‘lgandan keyin kollektor minerallarga emas, balki ushbu pufakchalar yuzasiga
adsorbsiyalanadi. Bu esa mayda xalkopirit zarrachalari birikishini osonlashtirib,
flotatsiya jarayonida ularning katta pufakchalarga yopishish ehtimolini oshiradi.
Bundan tashqari, natriy dietil ditiokarbamat kollektorining xalkopirit minerali
yuzasiga adsorbsiya bosim pasaygandan keyin ham saqlanib qoladi. Shunday
qilib, mikro-nano pufakchalar kollektor miqdori kamaygan taqdirda ham mayda
xalkopirit zarrachalari flotatsiyasiga ijobiy ta’sir ko‘rsatadi. Ushbu tadqiqot mineral
boyitish jarayonlarida mikro-nano pufakchalar ahamiyatini chuqurroq tushunishga
yordam beradi.
В статье проанализированы методы повышения
эффективности обогащения медных сульфидных руд. Для этого
использован способ генерации микро- и нанопузырьков в пульпе (водной
суспензии). Такой подход улучшает качество разделения мелкодисперсных
минералов и способствует снижению расхода химических реагентов.
В ходе исследования изучены характеристики микро- и нанопузырьков,
образующихся при снижении давления (депрессуризации) в пульпе, а также
влияние коллекторов (химических реагентов) на процесс. Эксперименты по
микрофлотации показали, что предварительная дегазация значительно
улучшает извлечение минерала халькопирита. После образования микро-
и нанопузырьков коллекторы преимущественно адсорбируются не на
поверхности минералов, а на самих пузырьках, что способствует агрегации
мелких частиц халькопирита и повышает их вероятность прикрепления к
крупным пузырькам в процессе флотации. Кроме того, было установлено,
что адсорбция коллектора диэтилдитиокарбамата натрия на поверхности
халькопирита сохраняется даже после снижения давления. Таким образом, микро- и нанопузырьки положительно влияют на флотацию мелких
частиц халькопирита даже при сниженной дозе коллектора. Проведённое
исследование способствует более глубокому пониманию значимости микро-
и нанопузырьков в процессах минералогического обогащения.
This article deals with the effective beneficiation of sulfide copper ores.
We used the method of creating micro- and nano-sized bubbles in the aqueous
mixture. This method improves the quality of the separation of fine-grained
minerals and helps to reduce the consumption of chemical reagents. In research,
the effects of micro-nanobubbles and collectors (chemical reagents) formed as
a result of the release of gas contained in the bottle through pressure reduction
(depressurization) were studied. According to microflotation experiments, the pre-
deaeration process significantly improves chalcopyrite separation. Additionally,
when micro-nanobubbles form, the collector adheres to the surface of these bubbles
rather than the minerals. This procedure facilitates the aggregation of small
chalcopyrite particles, increasing the probability that they will stick to large bubbles
during the flotation process. n top of that, the sodium diethyl dithiocarbamate
collector stays strongly attached to the chalcopyrite surface even when the pressure
is lowered. Thus, micro-nanobubbles have a positive effect on the flotation of
small chalcopyrite particles, even if the amount of the collector is reduced. This
study helps us better understand the importance of micronanobubbles in mineral
beneficiation processes.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Matkarimov S.T. | texnika fanlari doktori (DSc), “Metallurgiya” kafedrasi professori, | ,4Islom Karimov nomidagi Toshkent davlat texnika universiteti |
2 | Muhametdjanova .A. | texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent, “Metallurgiya” kafedrasi dotsenti | Islom Karimov nomidagi Toshkent davlat texnika universiteti |
3 | Siyuan .. | texnika fanlari bo‘yicha falsafa doktori (PhD), “Resurslar va atrof-muhit muhofazasi“ kolleji dotsenti | Uhan texnologiyalar universiteti (Xitoy) |
4 | Nosirxojayev S.Q. | texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent, “Metallurgiya” kafedrasi mudiri | Islom Karimov nomidagi Toshkent davlat texnika universiteti |
№ | Ҳавола номи |
---|---|
1 | Calgaroto, S., Azevedo, A., & Rubio, J. (2015). Flotation of quartz particles assisted by nanobubbles. International Journal of Mineral Processing, 137, 64–70. https://doi.org/10.1016/ j.minpro.2015.02.010 |
2 | Chang, G. H., Xing, Y. W., Zhang, F. F., Yang, Z. L., Liu, X. K., & Gui, X. H. (2020). Effect of nanobubbles on the flotation performance of oxidized coal. ACS Omega, 5 (32), 20283–20290. https:// doi.org/10.1021/acsomega.0c02154 |
3 | Chen, G. H., Ren, L. Y., Zhang, Y. M., & Bao, S. X. (2022). Improvement of fine muscovite flotation through nanobubble pretreatment and its mechanism. Minerals Engineering, 189, 107868. https://doi. org/10.1016/j.mineng.2022.107868 |
4 | Chen, J. (2017). Research on structure and mechanism of flotation catcher. Mineral Protection and Utilization, 4, 98–106. |
5 | Farrokhpay, S., Filippova, I., Filippov, L., Picarra, A., Rulyov, N., & Fornasiero, D. (2020). Flotation of fine particles in the presence of combined microbubbles and conventional bubbles. Minerals Engineering, 155, 106439. https://doi.org/10.1016/j.mineng.2020.106439 |
6 | Hampton, M. A., & Nguyen, A. V. (2010). Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science, 154 (1), 30–55. https://doi.org/10.1016/j. cis.2010.01.006 |
7 | Hornn, V., Park, I., Ito, M., Shimada, H., Suto, T., Tabelin, C. B., Jeon, S., & Hiroyoshi, N. (2021). Agglomeration-flotation of finely ground chalcopyrite using surfactant-stabilized oil emulsions: Effects of co-existing minerals and ions. Minerals Engineering, 171, 107076. https://doi.org/10.1016/j. mineng.2021.107076 |
8 | Li, C. W., Zhang, Y. T., & Zhang, H. J. (2024). Study on removal of ultrafine graphite by nanobubbles-assisted flotation technique from graphite slime slurry. Separation and Purification Technology, 328, 125079. https://doi.org/10.1016/j.seppur.2023.125079 |
9 | Li, H. P., Afacan, A., Liu, Q. X., & Xu, Z. H. (2015). Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation. Minerals Engineering, 84, 106–115. https://doi.org/10.1016/j.mineng.2015.10.002 |
10 | Li, K. Y., Zhang, H. F., Peng, T., Liu, C., & Yang, S. Y. (2022). Influences of starch depressant with the various molecular structure on the interactions between hematite particles and �lotation bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 652, 129814. https://doi. org/10.1016/j.colsurfa.2022.129814 |
11 | Luo, X., Yan, Q., Lu, L., & Cao, X. (2005). Jiangxi nonferrous metal mine solid waste treatment and disposal problems and countermeasures. China Mining, 66, 26–28. |
12 | Martínez-Gómez, V., Pérez-Garibay, R., & Rubio, J. (2013). Factors involving the solids-carrying flotation capacity of microbubbles. Minerals Engineering, 53, 160–166. https://doi.org/10.1016/j. mineng.2013.07.016 |
13 | Meng, X. S., Khoso, S. A., Lyu, F., Wu, J. Q., Kang, J. H., Liu, H., Zhang, Q. P., Han, H. S., Sun, W., & Hu, Y. H. (2019). Study on the influence and mechanism of sodium chlorate on COD reduction of minerals processing wastewater. Minerals Engineering, 134, 1–6. https://doi.org/10.1016/j. mineng.2019.106218 |
14 | Miao, Y. C., Wen, S. M., Shen, Z. H., Feng, Q. C., & Zhang, Q. (2022). Flotation separation of chalcopyrite from galena using locust bean gum as a selective and eco-friendly depressant. Separation and Purification Technology, 283, 120173. https://doi.org/10.1016/j.seppur.2021.120173 |
15 | Molina, G. C., Cayo, C. H., Rodrigues, M. A. S., & Bernardes, A. M. (2013). Sodium isopropyl xanthate degradation by advanced oxidation processes. Minerals Engineering, 45, 88–93. https://doi. org/10.1016/j.mineng.2012.12.009 |
16 | Nuorivaara, T., Björkqvist, A., Bacher, J., & Guerrero, R. S. (2019). Environmental remediation of sulfidic tailings with froth flotation: Reducing the consumption of additional resources by optimization of conditioning parameters and water recycling. Journal of Environmental Management, 236, 125–133. https://doi.org/10.1016/j.jenvman.2019.01.107 |
17 | Rezaei, R., Massinaei, M., & Zeraatkar, A. (2018). Removal of the residual xanthate from flotation plant tailings using modified bentonite. Minerals Engineering, 119, 1–10. https://doi. org/10.1016/j.mineng.2018.01.012 |
18 | Shang, Y., Chen, J., & He, F. (2016). China lead and zinc polymerization technology new advances. China Lead and Zinc, 6, 35–47. |
19 | Tao, J. M., Liu, X. D., Luo, X. Y., Teng, T. K., Jiang, C. Y., Drewniak, L., Yang, Z. D., & Yin, H. Q. (2021). An integrated insight into bioleaching performance of chalcopyrite mediated by microbial factors: Functional types and biodiversity. Bioresource Technology, 319, 124219. https://doi. org/10.1016/j.biortech.2020.124219 |
20 | Tsai, J.-C., Kumar, M., Chen, S.-Y., & Lin, J.-G. (2007). Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Separation and Purification Technology, 58 (1), 61–67. https://doi.org/10.1016/j.seppur.2007.07.022 |
21 | Wang, C. T., Liu, R. Q., Zhai, Q. L., Xie, Z. H., Sun, W., Li, P. Y., & Wang, Z. H. (2023a). Exploring the effect of pulp aeration and lime-aid grinding on pyrrhotite-rich type copper sulfide ore flotation separation. Separation and Purification Technology, 311, 123268. |
22 | Wang, Q. Q., Zhang, H. F., Xu, Y. L., Bao, S. X., Liu, C., & Yang, S. Y. (2023b). The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite. Carbohydrate Polymers, 303, 120484. https://doi.org/10.1016/j.carbpol.2023.120484 |
23 | Wang, X., Liu, W., Jiao, F., Qin, W. Q., & Yang, C. R. (2020). New insights into the mechanism of selective flotation of copper and copper-tin alloy. Separation and Purification Technology, 253, 117497. https://doi.org/10.1016/j.seppur.2020.117497 |
24 | Xie, H. Y. (2021). Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sul�ide ore without collector and inhibitor. Separation and Purification Technology, 267, 118621. https://doi.org/10.1016/j.seppur.2021.118621 |
25 | Xie, J., Liu, L. S., Huo, X. P., Liu, Q., Liu, X. C., & Duan, R. Z. (2024). Effect of micro-bubble size and dynamic characteristics on oil removal efficiency of the flotation. Separation and Purification Technology, 337, 126421. https://doi.org/10.1016/j.seppur.2023.126421 |
26 | Yang, S. Y., Xu, Y. L., Kang, H., Li, K. Y., & Li, C. (2023a). Investigation into starch adsorption on hematite and quartz in flotation: Role of starch molecular structure. Applied Surface Science, 623, 157064. https://doi.org/10.1016/j.apsusc.2023.157064 |
27 | Yang, S. Y., Zhang, H. F., Chi, R., Bao, S. X., Xu, Y. L., & Liu, C. (2023b). A critical review on the application of green polymer-type scale inhibitors in mineral flotation. Minerals Engineering, 204, 108436. https://doi.org/10.1016/j.mineng.2023.108436 |
28 | Yang, S. Y., Zhou, M., Chen, X., Hu, L. P., Xu, Y. F., Fu, W., & Li, C. (2022a). A comparative review of microplastics in lake systems from different countries and regions. Chemosphere, 286, 131806. https://doi.org/10.1016/j.chemosphere.2021.131806 |
29 | Yang, S., Yavkochiva, D. O., Matkarimov, S. T., & Yuldasheva, N. S. (2022b). A study of technology and equipment for the mineral flotation based on the interfacial micro/nano bubble group. Technical Science and Innovation, 2, 225–232. https://doi.org/10.51346/tstu-01.22.2-77-0181 |
30 | Yin, Z., Sun, W., Hu, Y., Zhai, J., & Guan, Q. (2017). Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation. Separation and Purification Technology, 173, 9–16. https://doi.org/10.1016/j.seppur.2016.09.031 |
31 | Yuan, Q. Z., Mei, G. J., Liu, C., Cheng, Q., & Yang, S. Y. (2022). A novel sulfur-containing ionic liquid collector for the reverse flotation separation of pyrrhotite from magnetite. Separation and Purification Technology, 303, 122189. https://doi.org/10.1016/j.seppur.2022.122189 |
32 | Zhang, Z. Y., Ren, L. Y., & Zhang, Y. M. (2021). Role of nanobubbles in the flotation of fine rutile particles. Minerals Engineering, 172, 107140. https://doi.org/10.1016/j.mineng.2021.107140 |