Ushbu maqolada tovush balandligini o‘lchash vositalarini IEC
61672-3:2013 xalqaro standarti talablari asosida kalibrlash jarayoni va uning
ahamiyati chuqur tadqiq etilgan. Tovush bosimi balandligini aniq o‘lchash atrof-
muhitni monitoring qilish, sanoatda shovqin nazorati, sog‘liqni saqlash va mehnat
xavfsizligi sohalarida muhim rol o‘ynaydi. Tadqiqotning asosiy maqsadi tovush
balandligini o‘lchash vositalarining akustik ko‘rsatkichlari bo‘yicha standart
talablariga muvofiq kalibrlash jarayonini tahlil qilishdan iborat. Maqolada
tovush balandligini o‘lchash vositalarini kalibrlashning nazariy asoslari, o‘lchash
usullari va hisoblash formulalari batafsil yoritilgan. Shuningdek, o‘lchashlarning
noaniqligini tashkil etuvchi komponentlar (akustik multifunksional kalibrator,
tovush balandligini o‘lchash vositasi va uning mikrofoni bilan bog‘liq tashkil
etuvchilar) keltirilgan. O‘lchashlar noaniqligi vizual usul yordamida tahlil qilingan
va tashkil etuvchi noaniqliklarining umumiy arifmetik yig‘indisiga nisbatan foiz
ulushlari aniqlangan. Tadqiqot 450924 zavod raqamli “Ассистент” modelidagi
tovush balandligini o‘lchash vositasi “МК 265” mikrofon modelidan foydalangan
holda olib borılgan. Olingan natijalar asosida o‘lchash noaniqligiga eng ko‘p va eng
kam ta’sir ko‘rsatgan komponentlar aniqlanib, noaniqlikni yaxshilash va o‘lchash
jarayonlarini optimallashtirish bo‘yicha amaliy takliflar ishlab chiqilgan.
Ushbu maqolada tovush balandligini o‘lchash vositalarini IEC
61672-3:2013 xalqaro standarti talablari asosida kalibrlash jarayoni va uning
ahamiyati chuqur tadqiq etilgan. Tovush bosimi balandligini aniq o‘lchash atrof-
muhitni monitoring qilish, sanoatda shovqin nazorati, sog‘liqni saqlash va mehnat
xavfsizligi sohalarida muhim rol o‘ynaydi. Tadqiqotning asosiy maqsadi tovush
balandligini o‘lchash vositalarining akustik ko‘rsatkichlari bo‘yicha standart
talablariga muvofiq kalibrlash jarayonini tahlil qilishdan iborat. Maqolada
tovush balandligini o‘lchash vositalarini kalibrlashning nazariy asoslari, o‘lchash
usullari va hisoblash formulalari batafsil yoritilgan. Shuningdek, o‘lchashlarning
noaniqligini tashkil etuvchi komponentlar (akustik multifunksional kalibrator,
tovush balandligini o‘lchash vositasi va uning mikrofoni bilan bog‘liq tashkil
etuvchilar) keltirilgan. O‘lchashlar noaniqligi vizual usul yordamida tahlil qilingan
va tashkil etuvchi noaniqliklarining umumiy arifmetik yig‘indisiga nisbatan foiz
ulushlari aniqlangan. Tadqiqot 450924 zavod raqamli “Ассистент” modelidagi
tovush balandligini o‘lchash vositasi “МК 265” mikrofon modelidan foydalangan
holda olib borılgan. Olingan natijalar asosida o‘lchash noaniqligiga eng ko‘p va eng
kam ta’sir ko‘rsatgan komponentlar aniqlanib, noaniqlikni yaxshilash va o‘lchash
jarayonlarini optimallashtirish bo‘yicha amaliy takliflar ishlab chiqilgan.
В статье подробно исследуется процесс калибровки средств
измерения уровня звука на основе требований международного стандарта
IEC 61672-3:2013 и его значимость. Точное измерение уровня звукового
давления играет важную роль в мониторинге окружающей среды, контроле
шума в промышленности, здравоохранении и охране труда. Основной
целью исследования является анализ процесса калибровки приборов для
измерения уровня звука в соответствии с нормативными требованиями к
их акустическим характеристикам. В статье подробно рассматриваются
теоретические основы калибровки приборов для измерения уровня
звука, методы измерений и расчётные формулы. Также приведены
компоненты, влияющие на неопределённость измерений (акустический
многофункциональный калибратор, прибор для измерения уровня звука
и его микрофон). Неопределённость измерений была проанализирована с
помощью визуального метода, и определены процентные вклады отдельных
неопределённостей в общую арифметическую сумму. Исследование
проводилось с использованием прибора для измерения уровня звука цифровой
модели «Ассистент» с заводским номером 450924 с микрофоном модели
«МК 265». На основе полученных результатов были выявлены компоненты,
оказывающие наибольшее и наименьшее влияние на неопределённость
измерений, и разработаны практические рекомендации по улучшению
неопределённости и оптимизации процессов измерений.
This article thoroughly studies the process of calibrating sound level
meters based on the requirements of the international standard IEC 61672-
3:2013 and its significance. Accurate measurement of sound pressure level
plays an important role in environmental monitoring, industrial noise control,
healthcare, and occupational safety. The main goal of the research is to
analyze the calibration process in accordance with the standard requirements
for acoustic parameters of sound pressure level measuring instruments. The
article details the theoretical foundations of the calibration of sound level
meters, measurement methods, and calculation formulas. We also present the
components that comprise the measurement uncertainty, which include the
acoustic multifunctional calibrator, sound level meter, and its microphone.
We looked at the measurement uncertainty using a visual analysis method and
figured out the percentage of each uncertainty component compared to the total
sum. The study used the “MK 265” microphone model from “Ассистент” with
the factory number 450924, and based on the results, it looked at which parts
of the uncertainty had the biggest and smallest impact on the measurement
uncertainty, and suggestions were made to reduce uncertainty and improve
measurement methods.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Muxammad Aminov A.D. | etalonlarni saqlovchi | “O‘zbekiston Milliy metrologiya instituti” davlat muassasasi |
№ | Ҳавола номи |
---|---|
1 | Angon, P. B. (2023). Determination of sound level by using sound meter. Bangladesh. https://doi. org/10.13140/RG.2.2.25050.11200 |
2 | Aravinna, A. G. (2018). Basic concepts of measurement uncertainty. https://doi.org/10.13140/ RG.2.2.27778.99520 |
3 | BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. (2008a). Guide to the expression of uncertainty in measurement, JCGM100:2008, GUM 1995 with minor corrections. BIPM. |
4 | BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML. (2008b). Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ - Propagation of distributions using a Monte Carlo method, JCGM 101:2008. BIPM. |
5 | Chavan, A. B., & Hedaoo, M. N. (2022). Monitoring of air pollutant and sound level using IoT. Journal of Emerging Technologies and Innovative Research, 736–743. http://www.jetir.org |
6 | Davies, E. (2002). Noise and vibration. In Plant Engineer’s Reference Book (2nd ed., pp. 27-1– 27-16). Butterworth-Heinemann. https://doi.org/10.1016/B978-075064452-5/50082-1 |
7 | Environmental Noise Directive. (n.d.). European Union law. |
8 | Environmental Noise Regulation Act. (1999). Japan |
9 | GOST 17187-81. (1981). Sound level meters. General technical requirements and methods of testing. (In Russian). |
10 | IEC 61672-1:2013. (2013). Electroacoustics - Sound level meters - Part 1: Specifications. International standard of International Electrotechnician Comitee. |
11 | IEC 61672-3:2013. (2013). Electroacoustics - Sound level meters - Part 3: Periodic tests. International standard of International Electrotechnician Comitee. |
12 | Ismatullayev, P. R., Matyakubova, P. M., & To‘rayev, Sh. A. (Eds.). (2015). Metrologiya, standartlashtirish va sertifikatlashtirish [Metrology, standardization, and certification]. (In Uzbek). Tashkent: Lesson Press. |
13 | Law of the People’s Republic of China on the Prevention and Control of Environmental Noise Pollution. (n.d.). Law of the People’s Republic of China. |
14 | Long, M. (2014). Acoustic measurements and noise metrics. In Architectural Acoustics (2nd ed., pp. 129–174). Academic Press. https://doi.org/10.1016/B978-0-12-398258-2.00004-0 |
15 | Lyon, A. (2014). Why are normal distributions normal? The British Journal for the Philosophy of Science |
16 | MathWorks. (2019, November 22). Uniform distribution (continuous). https://www. mathworks.com |
17 | Nishonov, V. X., Ismatullayev, Sh. X., & Mo‘minov, N. Sh. (2024). Tibbiyot o‘lchash vositalari metrologik tekshiruvi [Metrological Inspection of Medical Measuring Instruments] (284 p.). (In Uzbek). ‘Innovatsion Rivojlanish’ Publ. and Print. House. |
18 | Schomer, P. D., & Swenson, G. W. (2002). Electroacoustics. In W. M. Middleton & M. E. Van Valkenburg (Eds.), Reference Data for Engineers (9th ed., pp. 40-1–40-28). Newnes. https://doi. org/10.1016/B978-075067291-7/50042-X |
19 | Technical Documentation. (2021). Calibration platform 3630. Sound level meter calibration 7763. Volume 2: Reference manual. |
20 | The Noise Control Act. (1972). United States of America. |
21 | Van der Veen, A., Cox, M., & Possolo, A. (2022). GUM guidance on developing and using measurement models. Accreditation and Quality Assurance, 27, 10.1007/s00769-022-01509-8. |
22 | Wang, X. (2010). Vehicle noise measurement and analysis. In X. Wang (Ed.), Vehicle Noise and Vibration Refinement (pp. 68–92). Woodhead Publ. https://doi.org/10.1533/9781845698041.2.68 |