Mazkur tadqiqot Internet narsalar (IoT) tizimlariga qaratilgan
kiberhujumlarni aniqlash hamda bartaraf etish uchun yangi algoritm va
modellarni ishlab chiqishga bag‘ishlangan. IoT qurilmalarining keng tarqalishi
axborot xavfsizligiga jiddiy tahdid solmoqda, chunki ularning ko‘pchiligi resurs
jihatdan cheklangan va zamonaviy xavfsizlik mexanizmlariga ega emas. Shu
sababli maqolada IoT tizimlarida yuzaga keladigan asosiy xavf-xatarlar, hujum
turlari (masalan, DoS, spoofing, sniffing) va ularni aniqlashda qo‘llanadigan
usullar (aniqlovchi modellar, mashinaviy o‘rganish algoritmlari) yoritilgan.
Xususan, an’anaviy statistik yondashuvlar bilan bir qatorda, sun’iy intellekt va
chuqur o‘rganishga asoslangan algoritmlarning afzalliklari ko‘rsatib berilgan.
Maqolada anomaliyalarni aniqlash, tarmoq trafigi tahlili va xavfni aniq vaqtda
identifikatsiyalash uchun gibrid yondashuv taklif etilgan. Tadqiqot doirasida
IoT qurilmalaridan 12 oy davomida yig‘ilgan 100 GB hajmdagi ma’lumotlar
to‘plamidan foydalanildi. Taklif etilgan gibrid model sodda mashinali o‘rganish
usullariga nisbatan 94,7 % aniqlik ko‘rsatkichi bilan 27 % yaxshilanishni ko‘rsatdi.
Bundan tashqari, ushbu model false-positiv ko‘rsatkichlarni 35 %gacha kamaytirdi
va real vaqt rejimida ishlov berish tezligini 2,3 barobar oshirdi. Tadqiqot natijalari
IoT xavfsizligi sohasida muhim yutuq hisoblanadi va sanoat muhitida amaliy
qo‘llash uchun yangi usullar taklif etadi.
Mazkur tadqiqot Internet narsalar (IoT) tizimlariga qaratilgan
kiberhujumlarni aniqlash hamda bartaraf etish uchun yangi algoritm va
modellarni ishlab chiqishga bag‘ishlangan. IoT qurilmalarining keng tarqalishi
axborot xavfsizligiga jiddiy tahdid solmoqda, chunki ularning ko‘pchiligi resurs
jihatdan cheklangan va zamonaviy xavfsizlik mexanizmlariga ega emas. Shu
sababli maqolada IoT tizimlarida yuzaga keladigan asosiy xavf-xatarlar, hujum
turlari (masalan, DoS, spoofing, sniffing) va ularni aniqlashda qo‘llanadigan
usullar (aniqlovchi modellar, mashinaviy o‘rganish algoritmlari) yoritilgan.
Xususan, an’anaviy statistik yondashuvlar bilan bir qatorda, sun’iy intellekt va
chuqur o‘rganishga asoslangan algoritmlarning afzalliklari ko‘rsatib berilgan.
Maqolada anomaliyalarni aniqlash, tarmoq trafigi tahlili va xavfni aniq vaqtda
identifikatsiyalash uchun gibrid yondashuv taklif etilgan. Tadqiqot doirasida
IoT qurilmalaridan 12 oy davomida yig‘ilgan 100 GB hajmdagi ma’lumotlar
to‘plamidan foydalanildi. Taklif etilgan gibrid model sodda mashinali o‘rganish
usullariga nisbatan 94,7 % aniqlik ko‘rsatkichi bilan 27 % yaxshilanishni ko‘rsatdi.
Bundan tashqari, ushbu model false-positiv ko‘rsatkichlarni 35 %gacha kamaytirdi
va real vaqt rejimida ishlov berish tezligini 2,3 barobar oshirdi. Tadqiqot natijalari
IoT xavfsizligi sohasida muhim yutuq hisoblanadi va sanoat muhitida amaliy
qo‘llash uchun yangi usullar taklif etadi.
Данное исследование посвящено разработке новых алгоритмов
и моделей для выявления и предотвращения кибератак, направленных на
системы интернета вещей (IoT). Широкое распространение IoT-устройств
представляет серьёзную угрозу информационной безопасности, поскольку
большинство таких устройств имеют ограниченные ресурсы и не оснащены
современными механизмами защиты. В статье рассмотрены основные
риски и угрозы, возникающие в IoT-среде, а также виды атак (например,
DoS, spoofing, sniffing) и методы их обнаружения (детектирующие модели,
алгоритмы машинного обучения). Особое внимание уделено преимуществам
алгоритмов, основанных на искусственном интеллекте и глубоком
обучении, по сравнению с традиционными статистическими подходами.
В работе предложен гибридный подход для выявления аномалий, анализа
сетевого трафика и оперативной идентификации угроз в реальном времени.
В рамках исследования использовался датасет объёмом 100 ГБ, собранный
в течение 12 месяцев с IoT-устройств. Предложенная гибридная модель
показала улучшение точности на 27 % по сравнению с простыми методами
машинного обучения, достигнув показателя точности 94,7 %. Кроме того,
удалось снизить уровень ложноположительных срабатываний до 35 % и
увеличить скорость обработки в реальном времени в 2,3 раза. Полученные
результаты представляют собой значительное достижение в области IoT-безопасности и предлагают новые практические решения для применения в
промышленной среде.
This study focuses on the development of new algorithms and models
for detecting and mitigating cyberattacks targeting Internet of Things (IoT)
systems. The widespread use of IoT devices poses a serious threat to information
security, as most of these devices are resource-constrained and lack modern
security mechanisms. The paper carefully looks at the main dangers and kinds
of attacks in IoT systems (like DoS, spoofing, and sniffing), along with the
methods used to detect them, which include detection models and machine
learning algorithms. In particular, the advantages of artificial intelligence and
deep learning-based algorithms over traditional statistical approaches are
highlighted. We propose a hybrid approach for anomaly detection, network
traffic analysis, and real-time threat identification. The research utilizes a 100
GB dataset collected over 12 months from IoT devices. The proposed hybrid
model demonstrated a 27% improvement in accuracy compared to basic machine
learning methods, achieving an accuracy rate of 94.7%. Additionally, our model
reduced false-positive rates by up to 35% and increased real-time processing
speed by a factor of 2.3. The results of this research represent a major advance
in IoT security and introduce novel methods suitable for practical application in
industrial environments.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | O'rinov .T. | “Axborot texnologiyalari” kafedrasi mudiri, dotsent | Zahiriddin Muhammad Bobur nomidagi Andijon davlat universiteti |
№ | Ҳавола номи |
---|---|
1 | Anthi, E., Williams, L., Słowińska, M., Theodorakopoulos, G., & Burnap, P. (2018). A supervised intrusion detection system for smart home IoT devices. IEEE Internet of Things Journal, 6(5), 9042– 9053. https://doi.org/10.1109/JIOT.2019.2926365 |
2 | Azmoodeh, A., Dehghantanha, A., Conti, M., & Choo, K.-K. R. (2018). Detecting crypto- ransomware in IoT networks based on energy consumption footprint. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1141–1152. https://doi.org/10.1007/s12652-017-0558-5 |
3 | Bertino, E., & Islam, N. (2017). Botnets and Internet of Things Security. Computer, 50(2), 76–79. https://doi.org/10.1109/MC.2017.62 |
4 | European Union Agency for Cybersecurity (ENISA). (2020). ENISA Threat Landscape 2020 – Internet of Things. https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-internet- of-things |
5 | Falco, G., Eling, M., Jablanski, D., Weber, M., Miller, V., Gordon, L. A., Wang, S. S., Schmit, J., Thomas, R., Elvedi, M., Murakami, T., Lau, H., & Sharot, M. (2019). Cyber risk research impeded by disciplinary barriers. Science, 366(6469), 1066–1069. https://doi.org/10.1126/science.aaz4795 |
6 | Garcia-Teodoro, P., Fernandez, M., Macia-Fernandez, G., & Tapiador, J. E. (2022). Ransomware: An interdisciplinary technical and legal approach. Security and Communication Networks, 2022, Article ID 2806605. https://doi.org/10.1155/2022/2806605 |
7 | Hameed, S., Khan, F. I., & Hameed, B. (2019). Understanding security requirements and challenges in Internet of Things (IoT): A review. Journal of Computer Networks and Communications, 2019, 1–14. https://doi.org/10.1155/2019/9629381 |
8 | Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M. M. A. (2019). Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things, 7, 100059. https://doi. org/10.1016/j.iot.2019.100059 |
9 | Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P.-L., Iorkyase, E., Tachtatzis, C., & Atkinson, R. (2016). Threat analysis of IoT networks using arti�icial neural network intrusion detection system. In 2016 International Symposium on Networks, Computers and Communications (ISNCC) (pp. 1–6). https://doi.org/10.1109/ISNCC.2016.7746067 |
10 | Jan, S. U., Ahmed, S., Shakhshir, V., & Alahmadi, A. A. (2021). A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare system. Mobile Networks and Applications, 26(1), 234–252. https://doi.org/10.1007/s11036-020-01700-6 |
11 | Jung, W., Zhao, H., Sun, M., & Zhou, G. (2022). IoT botnet detection via power consumption modeling and deep learning. IEEE Transactions on Smart Grid, 13(1), 605–618. https://doi. org/10.1109/TSG.2021.3132578 |
12 | Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022 |
13 | Kim, J.-e., Park, T.-s., & Kim, K. J. (2022). The clinical effects of type 2 diabetes patient management using digital healthcare technology: A systematic review and meta-analysis. Healthcare, 10(3), 522. https://doi.org/10.3390/healthcare10030522 |
14 | Li, X., Wen, Z., Cui, L., et al. (2023). Quantitatively mapping the research status and trends of vegetation responses to climate change with bibliometric analysis. Journal of Soils and Sediments, 23(8), 2963–2979. https://doi.org/10.1007/s11368-023-03583-y |
15 | Liu, X., Yang, T., & Yan, J. (2020). LSTM network based intrusion detection method for industrial control systems. Computers & Electrical Engineering, 84, 106619. https://doi.org/10.1016/j. compeleceng.2020.106619 |
16 | Liu, Z., Lu, W., Yu, X., Rodriguez-Andina, J. J., & Gao, H. (2022). Approximation-Free Robust Synchronization Control for Dual-Linear-Motors-Driven System with Uncertainties and Disturbances. IEEE Transactions on Industrial Electronics, 69(10), 10500–10509. https://doi.org/10.1109/TIE.2022.3144567 |
17 | Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. https:// doi.org/10.1109/COMST.2017.2745201 |
18 | Mosenia, A., & Jha, N. K. (2023). A Comprehensive Study of Security of Internet-of-Things. IEEE Transactions on Emerging Topics in Computing. https://doi.org/10.1109/TETC.2023.3317675 |
19 | Moustafa, N., Turnbull, B., & Choo, K.-K. R. (2019). An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of Internet of Things. IEEE Internet of Things Journal, 6(3), 4815–4830. https://doi.org/10.1109/JIOT.2018.2871719 |
20 | Nguyen, T. N., Ngo, Q. D., Nguyen, H. T., & Giang, N. L. (2022). An advanced computing approach for IoT-botnet detection in industrial internet of things. IEEE Transactions on Industrial Informatics, 18(9), 6486–6494. https://doi.org/10.1109/TII.2022.3152814 |
21 | Özkaynak, F., Çelik, M., & Dağ, A. (2020). A novel deep learning model for network anomaly detection and classification. IEEE Transactions on Network and Service Management, 17(4), 2159– 2170. https://doi.org/10.1109/TNSM.2020.3014929 |
22 | Pajouh, H. H., Javidan, R., Khayami, R., Ali, D., & Choo, K.-K. R. (2019). A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing, 7(2), 314–323. https://doi. org/10.1109/TETC.2016.2633228 |
23 | Pamukov, M. E., Poulkov, V. K., & Shterev, V. A. (2018). Negative selection and neural network based algorithm for intrusion detection in IoT. In 2018 41st International Conference on Telecommunications and Signal Processing (TSP) (pp. 1–5). https://doi.org/10.1109/ TSP.2018.8441477 |
24 | Raza, M. A., Aziz, S., Tuersun, A., Noreen, M., Iqbal, M. Z., & Iftikhar, D. (2023). Social media as a tool for professional development, advancement and presentation of pharmacist expanded roles. International Journal of Pharmacy and Chemistry, 9(2), 14–20. https://doi.org/10.11648/j.ijpc.20230902.11 |
25 | Sicari, S., Rizzardi, A., Grieco, L. A., & Coen-Porisini, A. (2015). Security, privacy and trust in Internet of Things: The road ahead. Computer Networks, 76, 146–164. https://doi.org/10.1016/j. comnet.2014.11.008 |
26 | Yang, K., Zhou, Y., Zomaya, A. Y., & Li, Q. (2023). Federated learning for IoT security: A survey. IEEE Internet of Things Journal, 10(2), 1217–1246. https://doi.org/10.1109/JIOT.2022.3186109 |
27 | Yaseen, A., et al. (2024a). Baseline characteristics of SARS-CoV-2 vaccine non-responders in a large population-based sample. PLOS ONE, 19(5), e0303420. https://doi.org/10.1371/journal. pone.0303420 |
28 | Yaseen, Q. M., Aldwairi, M., & Manasrah, A. (2024b). A Reputation-Based AODV Protocol for Blackhole and Malfunction Nodes Detection and Avoidance. Computers, Materials & Continua, 80(2), 1867–1888. https://doi.org/10.32604/cmc.2024.051179 |
29 | Zhou, Z., Yu, X., Li, W., Luo, C., Ren, L., & Luo, J. (2020). Blockchain-empowered secure spectrum sharing for 5G heterogeneous networks. IEEE Network, 34(1), 24–31. https://doi.org/10.1109/ MNET.001.1900251 |