This article is devoted to the methodology of creating an intelligent mechatron module
based on a synergistic approach. Creating a multi-coordinate intelligent mechatron module and
expanding the functional capabilities of the controlled object based on them, allows to optimize the
dynamic characteristics. Also, the methodology for creating an intelligent mechatronic module based
on a synergistic approach allows for the integration of electrical, magnetic, and mechanical
components into a single circuit, the integration of technical parameter modification, and the
integration of processing functions into a single information-measuring module. In addition, the article
proposes a Eurorhythm scheme for expressing how the functional components are located relative to
each other in space and searching for the structural and constructive components of the mechatron
module. It serves to show the quadrupoles of the electromagnetic, magnetomechanical and
electromechanical connections of the intelligent mechatron module, and to develop structural-mode
graph models based on a synergistic approach, taking into account the relationships between dissimilar
schemes. Structural-mode graph models serve as the basis for developing structural-mode schemes that
allow for the implementation of mathematical calculations of linear, discrete, active and passive,
reversible and irreversible, parametric and nonparametric types, based on the integration of the
electrical, magnetic and mechanical parts of an intelligent mechatronic module into a single scheme.
The structure of a multi-output intelligent mechatronic module based on structural-mode diagrams
allows for the development of its main components, a design methodology, and the development of a
trajectory planning system due to its direct synergistic connections with the object.
This article is devoted to the methodology of creating an intelligent mechatron module
based on a synergistic approach. Creating a multi-coordinate intelligent mechatron module and
expanding the functional capabilities of the controlled object based on them, allows to optimize the
dynamic characteristics. Also, the methodology for creating an intelligent mechatronic module based
on a synergistic approach allows for the integration of electrical, magnetic, and mechanical
components into a single circuit, the integration of technical parameter modification, and the
integration of processing functions into a single information-measuring module. In addition, the article
proposes a Eurorhythm scheme for expressing how the functional components are located relative to
each other in space and searching for the structural and constructive components of the mechatron
module. It serves to show the quadrupoles of the electromagnetic, magnetomechanical and
electromechanical connections of the intelligent mechatron module, and to develop structural-mode
graph models based on a synergistic approach, taking into account the relationships between dissimilar
schemes. Structural-mode graph models serve as the basis for developing structural-mode schemes that
allow for the implementation of mathematical calculations of linear, discrete, active and passive,
reversible and irreversible, parametric and nonparametric types, based on the integration of the
electrical, magnetic and mechanical parts of an intelligent mechatronic module into a single scheme.
The structure of a multi-output intelligent mechatronic module based on structural-mode diagrams
allows for the development of its main components, a design methodology, and the development of a
trajectory planning system due to its direct synergistic connections with the object.
| № | Муаллифнинг исми | Лавозими | Ташкилот номи |
|---|---|---|---|
| 1 | Matyokubov .R. | PhD, Associate Professor | Tashkent State Technical University |
| 2 | Rakhimov T.O. | PhD, Associate Professor | Tashkent State Technical University |
| № | Ҳавола номи |
|---|---|
| 1 | 1. Glazunov, V.A. (2018). Novye mehanizmy v sovremennoj robototehnike [New mechanisms in modern robotics]. TEHANOSFERA, Moscow, 316 p (in. Russian). 2. Kolesnikova A. A. Sinergeticheskaya teoriya upravleniya [Synergetic theory of management]. – M.: EHnergoatomizdat, 1994. – 344 p. (in. Russian). |
| 2 | 3. Nazarov KH. N. Intellektualnye mnogokoordinatnye mekhatronnye moduli robototekhnichesikh system [Intelligent multi-coordinate mechatronic modules of robotic systems]. Monografiya, Toshkent izd “Mashkhur-Press” 2019. 143 p (in. Russian). 4. KHasanov P.F. (1975) Figurno-tochechnye modeli i diaopredeliteli matrits [Figure-dot models and matrix diadeterminants] Izdatel'stvo "Ukituvchi". Tashkent. 81 p. 5. Egorov O.D., Poduraev Ju.V. “Design of mechatronic modules: Textbook [Konstruirovanie mehatronnyh modulej: Uchebnik],” (in. Russian), M.: MGTU "STANKIN", 2004. Page No–360. |
| 3 | 6. Angeles, J, Fundamentals of Robotic Mechanical Systems. Theory, Methods, Algorithms, Fourth Edition, Springer, New York, 2014. 7. Afonin V.L. “Processing equipment based on parallel structure mechanisms [Obrabatyvajushhee oborudovanie na osnove mehanizmov parallel'noj struktury],” (in. Russian), MGTU STANKIN, 2006. Page No–452. 8. Yusupbekov N.R., Matyokubov N.R., Rakhimov T.O. Electromagnetic mechatron module control algorithm based on linear performance element of industrial robots // AIP Conference Proceedings, 2024, 3119(1), 060012. https://doi.org/ 10.1063/5.0214843 |
| 4 | 9. Matyokubov N.R., Rakhimov T.O. Group Control of Functional Linear Actuation Elements of Mechatronic Modules // Transactions of the Korean Institute of Electrical Engineers, 2024-06(Vol.73 No.06) https://doi.org/10.5370/KIEE.2024.73.6.995 10. Brodovskij V.N., Baranov M.V., Iljuhin Ju.V. “Mechatronic drive module for translational movement of technological machines [Mehatronnyj privodnoj modul' postupatel'nogo peremeshhenija dlja tehnologicheskih mashin],” (in. Russian), Mehatoonika. 2000. № 4. 11. Siddikov I., Rakhimov T. Parametric optimization of a multi-output electromagnetic mechatron module // E3S Web of Conferences 508, 01008 (2024). https://doi.org/10.1051/e3sconf/202450801008 |
| 5 | 12. Matyokubov N.R., Rakhimov T.O. StructuralMode Graphs of Electromagnetic and Mechatronic Modules of Intelligent Robots // 12th World Conference “Intelligent System for Industrial Automation” (WCIS- 2022), https://doi.org/10.1007/978-3-031-53488-1_30 13. Iljuhina N.S., Frolov A.A., Beleckaja L.V., “Study of static and dynamic characteristics of electromagnetic steering drives [Issledovanie staticheskih i dinamicheskih harakteristik jelektromagnitnyh rulevyh privodov],” (in. Russian), Izvestija TulGTU. Tehnicheskie nauki. 2011. Vyp. 5. Ch.1. 14. Gosiewski Z., Kondratiuk M., Selection of Coils Parameters in Magnetic Launchers, ‘Solid State Phenomena’, 2009, Vol. 147–149, pp. 438–443, Main Theme: Mechatronic Systems and Materials III. |
| 6 | 15. Matyokubov N.R., Rakhimov T.O. (2023) Mathematical Model of An Industrial Robot Built on The Basis of Linear Motion Mechatron Modules / Сhemical technology control and management International scientific and technical journal, 2023, №4 (112) pp.37-42. DOI:10.59048/2181-1105.1481. 16. Matyokubov N.R., Rakhimov T. (2023) Principles For Constructing Mechatron Modules Based on Electromagnetic Linear Execution Elements of Intelligent Robots //Acta of Turin Polytechnic University in Tashkent. – Т. 13. – №. 2. – pp. 49-53. 17. Krzysztof Just, Paweł Piskur., Static analysis of the tubular electromagnetic linearactuator with permanents magnets // Scientific Journal of Polish Naval Academy Zeszyty Nauko We Akademii Marynarki Wojennej 2018 (LIX) 2 (213). DOI: 10.2478/sjpna-2018-0015. |
| 7 | 2 (213). DOI: 10.2478/sjpna-2018-0015. 18. Ristic-Djurovic J. L., Gajic S. S., Ilic A. Z. et al., Design and Optimization of Electromagnets for Biomedical Experiments With Static Magnetic and ELF Electromagnetic Fields // IEEE Transactions On Industrial Electronics, 2018, Vol. 65, Issue 6, pp. 4991–5000. 19. E.V.Arhipova, N.V.Russova, G.P.Svincov, “Improved method of design calculation of DC armoured electromagnets with insertion anchors [Usovershenstvovannaja metodika proektnogo rascheta bronevyh jelektromagnitov postojannogo naprjazhenija s vnedrjajushhimisja jakorjami],” (in. Russian), Vestnik Chuvashskogo universiteta, no. 3, pp. 156-161, 2013. 20. T.O. Rakhimov, Algorithm for controlling multicoordinate mechatron modules of an industrial robot (Journal of Modern Technology and Engineering Vol.6, No.3, 2021), pp. 247-253. |