A unified mathematical model of the power flow in a system containing a reactive
component compensator consisting of capacitor banks connected in series to a thyristor control
reactor is presented. The application of the FACTS (Flexible Alternative Current Transmission
System - Controlled flexible DC power transmission) technology is shown to reduce the gap
between the controlled and unmanaged modes of operation of the electric power system (EPS),
presenting dispatching personnel with additional degrees of freedom in the management of
power flows and voltages in excess and deficit areas of the electric network. The main objectives
of the FACTS technology application are studied: increasing the transmission line capacity to
the thermal limit; optimizing power flows in a complex heterogeneous network; increasing the
static and dynamic stability of the electric power system. To assess the action of the new
generation of regulators of the power system, two alternative models of power flow in the
electric power system are considered. In the first model, the concept of alternating series
reactance is used as a state variable. In the second model, the characteristic of the advance
angle is used, given in the form of a nonlinear dependence in the problem of calculating the
power flow using the Newton-Raphson method. Conclusions are made on the presented models
of power flow allowing to estimate possibilities of the serial capacitor with thyristor control
TCSC (Thyristor Controlled Series Capacitor), as FACTS device, on improvement of modes of
functioning of electric power system.
Ushbu maqolada liniyaga ketma-ket ulangan tiristorli boshqarish reaktori bilan parallel
joylashgan reaktiv quvvat oqimining kompensatorli kondensator batareyaga ega tizimning
universal matematik modeli keltirilgan. Elektroenergetika tizimidagi boshqariladigan va
boshqarilmaydigan rejimlarning o`rtasidagi farqni kamaytirish imkonini beruvchi FACTS
(Flexible Alternative Current Transmission System – Boshqariladigan moslashuvchan
o`zgarmas tokli elektr uzatishlar) texnologiyassining qo`llanilishi keltirilgan. Bu texnologiya
dispetcherlik xizmatiga elektr tizimining to`yingan va defitsit qismlarida kuchlanish va quvvat
oqimlarini boshqarishda qo`shimcha imkoniyatlar beradi. FACTS texnologiyasining
qo`llanishidagi asosiy maqsadlari o`rganilgan:elektr uzatish liniyasining o`tkazuvchanligini
issiqlik chegarasigacham oshirish;murakkab ko`p jinsli tarmoqlarda quvvat oqimini
optimallash; elektr energetika tizimining statik va dinamik barqarorligini oshirish. Yangi avlod
regulyatorining ta’sirini baholashda elektr energetika tizimidagi ikta muqobil quvvat oqimining
modeli ko’rib chiqilgan. Birinchi modelda o'zgaruvchan holat sifatida o'zgaruvchan ketma-ket
reaktiv qarshilik tushunchasi qo'llaniladi. Ikkinchi modelda Nyuton-Rafson usuli yordamida
kuch oqimini hisoblash vazifasida nochiziqli bog`liqlik shaklida berilgan ilgarilanma
burchakning xarakteristikasi qo'llaniladi. Elektr energetika tizimining ishlash rejimlarini
yaxshilash uchun keltirilgan FACTS qurilmalari sifatida TCSC (Thyristor Controlled Series
Capacitor) tiristorli nazorati bilan ketma-ket ulangan kondansator imkoniyatlarini baholash
uchun taqdim etilgan quvvat oqimi modellari bo'yicha xulosalar chiqarildi.
A unified mathematical model of the power flow in a system containing a reactive
component compensator consisting of capacitor banks connected in series to a thyristor control
reactor is presented. The application of the FACTS (Flexible Alternative Current Transmission
System - Controlled flexible DC power transmission) technology is shown to reduce the gap
between the controlled and unmanaged modes of operation of the electric power system (EPS),
presenting dispatching personnel with additional degrees of freedom in the management of
power flows and voltages in excess and deficit areas of the electric network. The main objectives
of the FACTS technology application are studied: increasing the transmission line capacity to
the thermal limit; optimizing power flows in a complex heterogeneous network; increasing the
static and dynamic stability of the electric power system. To assess the action of the new
generation of regulators of the power system, two alternative models of power flow in the
electric power system are considered. In the first model, the concept of alternating series
reactance is used as a state variable. In the second model, the characteristic of the advance
angle is used, given in the form of a nonlinear dependence in the problem of calculating the
power flow using the Newton-Raphson method. Conclusions are made on the presented models
of power flow allowing to estimate possibilities of the serial capacitor with thyristor control
TCSC (Thyristor Controlled Series Capacitor), as FACTS device, on improvement of modes of
functioning of electric power system.
В статье приведена унифицированная математическая модель потока мощности
в системе, содержащей компенсатор реактивной составляющей из последовательно
включенных в линию батареи конденсаторов, соединенных параллельно с реактором
тиристорного управления. Показано применение технологии FACTS (Flexible Alternative
Current Transmission System - Управляемые гибкие электропередачи постоянного тока),
позволяющей уменьшить разрыв между управляемым и неуправляемым режимами
функционирования электроэнергетической системы (ЭЭС), представляя диспетчерскому
персоналу дополнительные степени свободы при управлении потоками мощности и
напряжениями в избыточных и дефицитных областях электрической сети. Изучены
основные цели применения технологии FACTS: повышение пропускной способности линии
электропередачи до теплового предела; оптимизация потоков мощности в сложной
неоднородной сети; повышение статической и динамической устойчивости
электроэнергетической системы. Для оценки действия нового поколения регуляторов
энергосистемы рассмотрены две альтернативные модели потока мощности в
электроэнергетической системе. В первой модели в качестве переменной состояния
использовано понятие переменного последовательного реактивного сопротивления. Во
второй модели использована характеристика угла опережения, задаваемая в форме
нелинейной зависимости в задаче расчета потока мощности с помощью метода
Ньютона-Рафсона. Сделаны выводы по представленным моделям потока мощности,
позволяющие оценить возможности последовательного конденсатора с тиристорным
управлением TCSC (Thyristor Controlled Series Capacitor) как устройства FACTS, по
улучшению режимов функционирования электроэнергетической системы.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Misrikhanov M.S. | professor | Ивановского государственного энергетического университета и Московского энергетического института |
2 | Khamidov S.V. | dotsent | TDTU |
№ | Ҳавола номи |
---|---|
1 | Misrikhanov M. Sh., Ryabchenko V. N., Khamidov Sh.V. Raschyot potokov mosh`nosti v elektricheskix setyax s ustroyistvami FACTS: Ucheb. Posobie / FGBOBO ― Ivanovskiy gosudarstvenniy energeticheskiy universitet imeni V.I. Lenina‖. – Ivanovo, 2018. 208 s. 2. Acha, E.A. FACTS: Modeling and Simulation in Power Networks/ E. Acha и др. – John Wiley & Sons, 2004. P. 53-67. 3. Fuerte-Esquivel, C.R. Integrated SVC and Step-down Transformer Model for NewtonRaphson Load Flow Studies / C.R. Fuerte Esquivel, E. Acha, H. Ambriz-Pe’rez // IEEE Trans. Power Engineering Review 2000. № 20(2). P. 45-46. 4. Andersen P. Upravlenie energosistemami i ustoychivost` / -M.: Energiya, 1980. 15-30 s. 5. Hingorani N.G. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems / IEEE Press, 2000. P. 10-22. 6. Texnologiya i ustroyistva FACTS: Ucheb. Posobie / M.Sh. Misrikhanov, V.N. Ryabchenko / FGBOBO «Ivanovskiy gosudarstvenniy energeticheskiy universitet imeni V.I. Lenina». – Ivanovo, 2017. –112 s. 7. Teoriya matrits / F.R. Gantmakher. – М.:Nauka, 1987. 22-54 s. 8. Minimalnaya parametrizaciya resheniy lineynix matrichnix uravneniy / E.Yu. Zibyn, M.Sh. Misrikhanov, V.N. Ryabchenko // Sovremennie metodi upravleniya mnogosvyazannimi sistemami /pod red. А.А.Krassovskogo. – Vip. 2. – М.:Energoatomizdat, 2003. 59-73 s. 9. Primenenie ststicheskix istochnikov reaktivnoy moshnosti dlya povisheniya ustoychivosti I nadejnosti elektroperedach. Obzornaya informaciya / А.А. Kalyujniy [I dr.].Informenergo, 1989. 3-25 s. 10. A Quasi-Newton Algorithm for the Load Flow Solution of Large Networks with FACTS Controlled Branches / E.Acha // Proc. Of the 28th Universities Power Engineering Conference 1993, Staffordshire University. – Vol. 1. – Stafford, UK. - P.153-156. 11. Integrated SVC and Step-Down Transformer Model for Newton-Raphson Load Flow Studies / C.R. Fuerte-Esquivel, E. Acha, H. Ambriz- Pe’rez // IEEE Trans. Power Engineering Review. – 2000. - № 20(2). – p. 45-46. 12. Thyristor-based facts controllers for electrical transmission systems / R.M. Mathur, R.K. Varma. – Piscataway: IEEE Press, 2002. P. 17-19. 13. Ustanovivshiesya rejimi elektroenergeticheskix system I ix optimizaciya / X.F. Fazilov, T.X. Nasirov. - Т.: «Moliya». 1999. – 370 s. 14. Staticheskie ustroistva upravleniya rejimami energosistem / D.B. Gvozdev, A.V. Drozdov, V.I. Kochkin, S.V. Krainov //Elektricheskie stancii. 2011. № 8. 15. Elektroenergetika Rossii: Sovremennoe sostoyanie, Problemi I perspektivi. Sb. nauch. trudov / pod red. D.R. Lyubarskogo,V.А. Shuina. — М.: Izd. ОАО «Energosetproekt», 2012. Electrical and Computer Engineering 175 16. Allaev К.R. Energetika mira I Uzbekistana. Т. «Moliya», 388 s. 17. Аllaev К.R., Teshabaev B.М.. Prognozirovanie energeticheskix pokazateley elektroenergeticheskix sistem. Т. Problemi energo- I resursosberejeniya, 2007, №3-4, 25-36 s. 18. www.ewh.ieee.org/r6/san_francisco/pes/pes_pdf/AplicationofNew-Technologies.pdf. 19. Asingnacion de cargos por el porteodeflujos de potentcia active y reactivaenlossistemas de transmissi ́ n basada en el m ́ todo de rastreo de la electricidad / R. Laguna-Velasco // MSc thesis (in Spanish), Centro de Investigaci ́ n Avarzada del Instituto Polit ́ cnico Ncional, Unidad Guadalajara. – Mexico, 2002. 20. Thyristor-based facts controllers for electrical transmission systems / R.M. Mathur, R.K. Varma. – Piscataway: IEEE Press, 2002. |