The article considers the provision of static stability in the electric power system. Static
and aperiodic (sliding) stability and static periodic (vibration) stability of synchronous
generators, which are simultaneously included in the electrical network, are presented. It is
shown that one of the effective means of increasing static stability is the use of an automatic
excitation regulator of strong action generators. It is noted that the installation of reactive power
compensation devices allows maintaining the voltage at the points of the network, which
favorably affects the static stability. Recommendations for increasing the static stability limit of
the electrical power system are given. In addition, it is presented that the static stability reserve
should be at least 20% for power transmission in normal mode, and the static stability reserve
for power transmission in post-emergency mode should be at least 8%. The article also presents
a graph of stator current changes and rotor angle deviations during synchronous generator selfvibration, on the incorrect setting of automatic excitation regulator during simulation in Matlab
Simulink environment.
Maqolada elektr energiyasi tizimining statik turg’unligini ta'minlash ko'rib chiqilgan.
Tarmoqqa parallel ulangan sinhron generatorning statik nodavriy (sirpanish) turg’unligi va
statik davriy (tebranishli) turg’unligi ko'rib chiqilgan. Eng yahshi statik turg’unlikni oshiruvchi
vosita bu, qo'zg’atishni kuchli avtomatik rostlash qurilmasidan foydalanish ko'rsatilgan. Yana
reaktiv quvvatni rostlash qurilmasi, tarmoqning belgilangan nuqtasidagi kuchlanishni ushlab
turishi ham statik turg’unlik chegarasiga ta'sir ko'rsatadi. Elektrenergiyasi tarmog’ining statik
turg’unlik chegarasini oshirish imkonini beruvchi bir nechta tadbirlar tavsiya etilgan.
Bundan tashqari normal rejimda, elektr energiyani uzatishda statik turg’unlik zahira darajasi
kamida 20% ni, avriyadan keyingi holatda elektr – energiyani uzatishda statik turg’unlik
zahira darajasi kamida 8% ni tashkil etish kerakligi ko'rsatilgan. Shu bilan birgalikda
maqolada, qo'zg’atishni avtomatik rostlash qurilmasi noto'g’ri sozlangan holati uchun
Matlab Simulink dasturi yordamida modellashtirilib, sinhron generatordagi tok va rotorning
oqish burchagi δ - ning o'zgarish grafigi keltirilgan.
The article considers the provision of static stability in the electric power system. Static
and aperiodic (sliding) stability and static periodic (vibration) stability of synchronous
generators, which are simultaneously included in the electrical network, are presented. It is
shown that one of the effective means of increasing static stability is the use of an automatic
excitation regulator of strong action generators. It is noted that the installation of reactive power
compensation devices allows maintaining the voltage at the points of the network, which
favorably affects the static stability. Recommendations for increasing the static stability limit of
the electrical power system are given. In addition, it is presented that the static stability reserve
should be at least 20% for power transmission in normal mode, and the static stability reserve
for power transmission in post-emergency mode should be at least 8%. The article also presents
a graph of stator current changes and rotor angle deviations during synchronous generator selfvibration, on the incorrect setting of automatic excitation regulator during simulation in Matlab
Simulink environment.
В статье рассматривается обеспечение статической устойчивость в элек-троэнергетической системе. Представлены статическая и апериодическая (сползание)
устойчивость и статическая периодическая (калебательная) устойчивость синхронных
генераторов, которые параллельно включены в электрическую сеть. Показано, что од-ним из эффективных средств повышения статической устойчивости является
применение автоматического регулятора возбуждения генераторов сильного действия.
Отмечено, что установка устройств компенсации реактивной мощности позволяет
поддерживать напряжение в точках сети, что благоприятно сказывается на
статическую устойчивость. Даны рекомендации по повышению предела статической
устойчивости электроэнергетической системы. Кроме того, представлен запас
статической устойчивости, для электропередачи в нормальном режиме должен
составлять не менее 20%, а запас статической устойчивости для электропередачи
в послеаварийном режиме - не менее 8%. Также представлен график изменения тока
статора и отклонения угла ротора во время самораскачивания синхронного генератора
на неправильной настройке автоматического регулятора возбуждения при
моделировании в среде Matlab Simulink.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Bekishev A.E. | катта ўқитувчиси | TDTU |
2 | Urakov S.E. | assistent | TDTU |
№ | Ҳавола номи |
---|---|
1 | http:// simenergy.ru/practice/power-system/106-static-stability 2. Pirmatov N.B., Bekishev A.E., Kurbanov N.A. Modelirovanie samoraskachivaniya sinxronnogo generatora v srede Simulink Matlab. //Tendensii i perspektivy razvitiya// nauki i obrazovaniya v usloviyax globalizatsii. –Pereyaslav-Xmelnitskiy 2018. №42. S. 585-589. 3. Zarudnaya A.P., Gorshkov K.E.Osobennosti primeneniya paketa Matlab/Simulink dlya analiza staticheskoy ustoychivosti sin xronnyx generatorov v energosisteme. //Vestnik YUUrGU. Seriya «Energetika», 2017. T. 17. № 3. S. 43 –54. 4. Vaynshteyn R.A., Samoraskachivanie generatorov. Metodicheskie ukazaniya dlya laboratornoy raboty. Izdatelstvo tomskogo politexnicheskogo universiteta 20 10, 13 s. 5. Berdnik E.G., Filippova N.G. Razvitie metodov i algoritmov analiza staticheskoy ustoychivosti slojnyx elektroenergeticheskix sistem // Upravlenie rejimami elektroenergeticheskix sistem: tez. dokl. Ivanovo: IGEU, 1995. S. 7. 6. Rukovodyaщie ukazaniya po opredeleniyu ustoychivosti energosistem. M: SPO «Soyuztexenergo», 1999. 7. Mamikonyans L.G., Gorbunova L.M., Gorbunova L.M., Gurevich YU.E., Libova L.E., Timchenko V.F. Metodicheskie ukazaniya po opredeleniyu ustoychivosti energosistem. Chast 2. VNIIE, MEI, Energosetproekt, NIIPT, IED 2005. 8. Goryachev V.YA., Elinov D.A., Kudashev A.V. Analiz ustoychivosti energeticheskoy sistemy putem imitatsionnogo modelirovaniya v srede matlab . Vestnik Baltiyskogo Federalnogo Universiteta Im. I. Kanta 2012. №2 . S. 45 -48. 9. Moskvin, I.A. Kolebatelnaya staticheskaya ustoychivost elektroenergeticheskoy sistemy s mejsistemnoy svyazyu, soderja shey reguliruemoe ustroystvo prodolnoy kompensatsii. Vestnik IGEU. 2013. V yp. 5. S. 1–5. 10. Zabello, E. Primenenie prikladnyx programm v raschetax rejimov i ustoychivosti raboty sobstvennyx generiruyushix istochnikov pri ix parallelnoy rabote s energosistemoy. Energetika i TEK. Nauka dlya praktiki. 2011. № 9/10. S. 20 –22. 11. Enin, V.N. Modelirovanie perexodnyx protsessov i analiz dinamicheskoy ustoychivosti sinxronn yx generatorov pri vozdeystvii bolshix vozmu sheniy. Nauka i obrazovanie. 2012. №10. S. 495 –503. 12. Volokitina V.V., Nikitin V.V., Opalev YU.G., TebenkovT.G., Imita tsionnaya matematicheskaya model sinxronnoy magnitoelektricheskoy mashin y v generatornom rejime v srede Matlab Simulink. Elektrosnabjenie i elektrooborudovanie. 2011. №4. S. 21–25. 13. Vagin G.YA., Solnsev E.B., Mamonov A.M., PetrovA.A. Matematic heskaya model elektroagregata mini-TES na baze yavnopolyusnogo sinxronnogo generatora. Izvestiya Tomskogo politexnicheskogo universiteta. Injiniring georesursov. 2015. T. 326, №8. S. 92 – 101. 14. KuleshovaE.O. ModelirovanieodnomashinnoyenergosistemыspomoshyuperedatochnyxfunksiyvMatlab/Simu link. Sovremennye problemy nauki i obrazovaniya. 2013. № 2. S. 1 –6. 15. Novash, I.V. Raschet parametrov modeli trexfaznogo transformatora iz bibilioteki Matlab/Simulink s uchetom nasyщeniya magnitoprovoda. Energetika. Izvestiya vysshix uchebnyx zavedeniy i energeticheskix ob’edineniy SNG. 2015. V ыp. 1. S. 12–24. 16. Korjov A.V. Modelirovanie sxem zamesheniya izolyasii kabeley 6(10) kV dlya otsenki chastichnyx razryadov s uchyotom rejimov ix rabot y v raspredelitelnoy seti. Vestnik YUUrGU. Seriya «Energetika». 2015. T. 15, № 4. S. 32 –39. DOI: 10.14529/power150405 17. K.E. KononenkoSamaraskachivaniesinxronnyxmashinmaloymoshnosti. Dissertatsionnaya rabota. Leningrad 1984. S. 29 -82. |