Қўлёзма матни тасвирларини қайта ишлаш ва таҳлил қилиш тизимларини ишлаб
чиқишнинг муҳим босқичи бўлиб берилган тасвирларга дастлабки ишлов бериш ҳисобланади,
чунки ушбу босқич натижаси бутун тизимнинг иш сифатига таъсир қилади. Мақола босқич
масалаларини ҳал қилишга бағишланади ва ушбу иш доирасида ушбу масалаларни ҳал қилувчи
мавжуд усуллар ва алгоритмларни аналитик шарҳлаш ўтказилган, уларни ҳал қилиш алгоритмлари
таклиф қилинади.
Қўлёзма матни тасвирларини қайта ишлаш ва таҳлил қилиш тизимларини ишлаб
чиқишнинг муҳим босқичи бўлиб берилган тасвирларга дастлабки ишлов бериш ҳисобланади,
чунки ушбу босқич натижаси бутун тизимнинг иш сифатига таъсир қилади. Мақола босқич
масалаларини ҳал қилишга бағишланади ва ушбу иш доирасида ушбу масалаларни ҳал қилувчи
мавжуд усуллар ва алгоритмларни аналитик шарҳлаш ўтказилган, уларни ҳал қилиш алгоритмлари
таклиф қилинади.
Важным этапом разработки систем обработки и анализа изображений рукописного текста
является предварительная обработка исходных изображений, так как результаты данного этапа
значительно влияют на качество работы системы в целом. Статья посвящена решению задач
указанного этапа и в рамках данной работы проведен аналитический обзор существующих
методов и алгоритмов, решающих эти задачи, предложены алгоритмы их решения.
An important stage in the development of systems for processing and analyzing of images of
handwritten texts is the preprocessing of the original images, since the results of this stage significantly
affect the quality of the system as a whole. The article is devoted to solving the problems of this stage and
in the framework of this work an analytical review of existing methods and algorithms that solve these
problems was carried out, the algorithms for their solution were proposed.
№ | Муаллифнинг исми | Лавозими | Ташкилот номи |
---|---|---|---|
1 | Asraev M.A. | _ | _ |
2 | Dadakhanov M.K. | _ | _ |
№ | Ҳавола номи |
---|---|
1 | Гонсалес Р., Вудс Р. Цифровая обработка изображений. – М.: Техносфера, 2012. – 1104 с |
2 | Шапиро Л., Стокман Дж. Компьютерное зрение. – М.: Бином. Лаборатория знаний, 2006. – 752 с |
3 | Otsu N. A threshold selection method from gray-level histograms //IEEE Trans. Systems Man Cybernet., Vol. 9 (1), 1979, pp. 62-66 |
4 | Yan H. Unified formulation of a class of image thresholding techniques //Pattern Recognition, Vol. 29 (12), 1996, pp. 2025-2032 |
5 | Ntir ogiannis K., Gatos B., Pr atikakis I. A performance evaluation methodology for historical document image binarization //IEEE Transactions on Image Processing, Vol. 22, 2013, pp. 595-609 |
6 | Yang Y., Yan H. An adaptive logical method for binarization of degraded document images //Pattern Recognition Letter, Vol. 33, 2012, pp. 787-807 |
7 | Bataineh B., Abdullah S., Omar K. An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows //Pattern Recognition Letter, Vol. 32, 2011, pp. 1805-1813. |
8 | Мандель И. Д. Кластерный анализ. – М.: Финансы и Статистика, 1988. – С.176 |
9 | Дюран Б., Оделл П. Кластерный анализ. – М.: Статистика, 1977. – С.128. |
10 | Bar - Yosef I., Hagbi N., Kedem K., Dinstein I. Line segmentation for degraded handwritten historical documents // Proc. 10th Int‘l Conf. Document Analysis and Recognition, 2009, pp. 1161–1165. |
11 | Li Y., Zheng Y., Doermann D., Jaeger S. Script independent text line segmentation in freestyle handwritten documents // Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30, 8, 2008, pp. 1313-1329 |
12 | Likfor man - Sulem L., Hanimyan A., Faur e C. A Hough based algorithm for extracting text lines in handwritten documents // Proc. of the 3rd Int’l Conf. on Document Analysis and Recognition, 1995, 2, pp. 774-777 |
13 | Likfor man - Sulem L., Zahour A., Taconet B. Text line segmentation of historical documents: a survey // Int’l Journal of Document Analysis and Recognition (IJDAR), 9, 2-4, 2007, pp. 123-138 |
14 | Kim G., Govindar aju V., Sr ihari S.N. An architecture for handwritten text recognition systems // Int’l Journal on Document Analysis and Recognition, 2, 1, 1999, pp. 37-44 |
15 | Likfor man - Sulem L., Faur e C. Extracting text lines in handwritten documents by perceptual grouping //Advances in handwriting and drawing: a multidisciplinary approach, 1994, Europia, Paris, pp. 117-135 |
16 | Nakajima Y., Mori S., Takegami S., Sato S. Global methods for stroke segmentation // Int’l Journal on Document Analysis and Recognition, 1999, 2, 1, pp. 19-23 |
17 | Manmatha R., Srimal N. Scale space technique for word segmentation in handwritten documents //Scale-Space Theories in Computer Vision, 1999, Springer, pp. 22-33 |
18 | Huang Chen and Srihari S.N. Word segmentation of off-line handwritten documents //Electronic Imaging 2008 (International Society for Optics and Photonics), (68150E–68150E), 2008 |
19 | Schlapbach A., Bunke H. Writer Identification Using an HMM-Based Handwriting Recognition System: To Normalize the Input or Not? // In: Proceedings of the 12th conference of the international graphonomics society, pp 138–142. |
20 | Местецкий Л.М. Непрерывная морфология бинарных изображений. Фигуры. Скелеты. Циркуляры. – М.: ФИЗМАТ-ЛИТ, 2009. – 287 с |
21 | Zhang T., Suen C. A fast parallel algorithm for thinning digital patterns //Communications of the ACM, Vol.27 (3), 1984, pp. 236-239. |
22 | Wu R.- Y., Tsai W. - H. A new one-pass parallel thinning algorithm for binary images //Pattern Recognition Letters, Vol.13 (10), 1992, pp. 715-723 |
23 | Kavallier atou E., Liolios N., Koutsogeor gos E., Fakotakis N., Kokkinakis G. The GRUHD database of Greek unconstrained handwriting //In Proc. of the 6th International Conference on Document Analysis and Recognition, 2001, pp. 561-565 |
24 | Likfor man - Sulem L., Zahour A., Taconet B. Text line segmentation of historical documents: a survey // Int’l Journal of Document Analysis and Recognition (IJDAR), 9, 2-4, 2007, pp. 123-138. |