The difference between the approaches of different researchers in describing the kinetics of bacterial growth lies in the choice of the most significant factors affecting the specific growth rate of microflora. In general, the specific growth rate of microorganisms depends on the availability of a limiting substrate, the presence of inhibitors, acidity, ambient temperature, and others. Thus, the specific growth rate of biomass depends on difficult to determine values. As a result of the analysis of known models, in this work we used the Kobozev model, with a minimum number of physicochemical and biological factors. Despite its relative simplicity, the model allows us to pose and solve the problem of optimizing the process of anaerobic fermentation. A systematic numerical experiment was carried out for a wide range of the above parameters. The optimal values of the main input parameters were found for the studied biomass species.
Turli tadqiqotchilarning bakterial o‘sish kinetikasini tavsiflashdagi yondoshuvlar o‘rtasidagi farq mikrofloraning o‘sish sur'atlariga ta'sir etuvchi eng muhim omillarni tanlash bilan bog‘liq. Umuman olganda, mikroorganizmning o‘ziga xos o‘sish sur'atini cheklovchi substratning mavjudligiga, ingibitorlarning mavjudligiga, kislotalikka, atrof-muhit haroratiga va boshqalarga bog‘liq. Shunday qilib, biomassaning o‘ziga xos o‘sish sur'ati qiymatlarini aniqlash qiyinligiga bog‘liq. Ma'lum modellarni tahlil qilish natijasida ushbu ishda biz minimal miqdordagi fizik-kimyoviy va biologik omillarni hisobga olgan holda Kobozev modelidan foydalandik. Nisbatan soddaligiga qaramay, model bizga anaerobik fermentatsiya jarayonini optimallashtirish masalasini hal qilish va imkonini beradi. Yuqoridagi parametrlarning keng doirasi uchun tizimli sonli tajriba o‘tkazildi. O‘rganilayotgan biomassa turlari uchun asosiy kirish parmetrlarining maqbul qiymatlari topildi.
The difference between the approaches of different researchers in describing the kinetics of bacterial growth lies in the choice of the most significant factors affecting the specific growth rate of microflora. In general, the specific growth rate of microorganisms depends on the availability of a limiting substrate, the presence of inhibitors, acidity, ambient temperature, and others. Thus, the specific growth rate of biomass depends on difficult to determine values. As a result of the analysis of known models, in this work we used the Kobozev model, with a minimum number of physicochemical and biological factors. Despite its relative simplicity, the model allows us to pose and solve the problem of optimizing the process of anaerobic fermentation. A systematic numerical experiment was carried out for a wide range of the above parameters. The optimal values of the main input parameters were found for the studied biomass species.
Отличие подходов разных исследователей при описании кинетики бактериального роста заключается в выборе наиболее значимых факторов, влияющих на удельную скорость роста микрофлоры. В общем случае, удельная скорость роста микроорганизмов зависит от доступности лимитирующего субстрата, наличия ингибиторов, кислотности, температуры среды и другие. Таким образом, удельная скорость роста биомассы зависит от трудности при определении величин. В результате анализа известных моделей, в данной работе использована модель Кобозева, с минимальным количеством физико-химических и биологических факторов. Несмотря на относительную простоту, модель позволяет ставить и решать задачу оптимизации процесса анаэробного брожения. Проведен систематический численный эксперимент для широкого диапазона вышеназванных параметров. Найдены оптимальные для исследуемых видов биомасс значения основных входных параметров.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Ismailov B.R. | Professor | Kazakhstan State University named after Muhtar Auezova |
2 | Babakhodjaev R.P. | professor | TDTU |
3 | Ismailov K.B. | associate professor | Kazakhstan State University named after M. Auezova |
№ | Название ссылки |
---|---|
1 | Baader V., Don, Brennderfer M. Biogas: Theory and practice. - M.: Kolos, 1982 (In Russian). |
2 | Vasilov R.G. Fundamental and applied aspects of modern biotechnology. Digest of articles // Interregional Forum "Russian High Technologies". - Cheboksary, 2017.- 188 p.(In Russian). |
3 | Dvoretskiy D. S., Dvoretskiy S. I., Muratova E. I., Ermakov A. A. Computer modeling of biotechnological processes and systems. - Tambov: Publishing house of the Tambov State Technical University, 2005. - 80 p. (In Russian). |
4 | Ruzhinskaya L.I., Fomenkova A.A. Mathematical modeling of the processes of anaerobic digestion of an organic substrate. // Sciencerise. No. 2 (4). 2014. pp. 63-69. (In Russian). |
5 | Ruzhinskaya L.I., Fomenkova A.A. Mathematical modeling of the processes of anaerobic digestion of an organic substrate. Overview // Technical Sciences. Scientific Journal "Science Rise" No. 4/2 (4), 2014. P. 63-69. (In Russian). |
6 | Gerber M., Span R. (2008). An Analysis of Available Mathematical Model for Anaerobic Digestion of Organic Substances for Production of Biogas. // International Gas Union Research conference.- Paris, 1. P. 1294-1324. |
7 | Laurent, L. (2001). Modélisation des biofilms de digestion anaérobie par système multi-agents: Mémoire de DAA. P.79. |
8 | Hu W.C., Thayanithy K., Forster C. F. (2001). Kinetic study of anaerobic digestion of sulfate-rich wastewaters from manufacturing food industries. // 7th International Conference on Environmental Science and Technology. Ermoupolis, Syros island (Greece). R. 342–349. |
9 | Havlik I., Votruba J., Sobotka M. (1986). Mathematical modeling of the anaerobic digestion process: application of dynamic mass-energy balance. Folia Microbiol, 31 (1). R. 56–68. DOI: 10.1007 / bf02928680. |
10 | Moletta R., Verrier D., Albagnac G. (1986). Dynamic modeling of anaerobic digestion. Water Research, 20 (4). P. 427-434. |
11 | Kiely G., Tayfur G., Dolan C., Tanjf K. (1997). Physical and vathematical modeling of anaerobic digestion of organic wastes. // Water Research. Great Britain: Pergamon Press Ltd, 31 (3). P. 534-540. DOI: 10.1016 / s0043-1354 (96) 00175-3. |
12 | Kalyuzhny S.V. High-intensity anaerobic technologies for industrial wastewater treatment // Catalysis in industry, 2004. No. 6. P. 42-50. (In Russian). |
13 | Siegrist H. Mathematical Model for Meso- and Thermophilic Anaerobic Sewage Sludge Digestion Environ // Sci. Technol, 2002. - Vol. 36. Issue 5. P. 1113-1123. DOI: 10.1021 / es010139p. |
14 | Kalyuzhnyi S.V. Batch anaerobic digestion of glucose and its mathematical modeling. I. Kinetic investigations // Biores. Technol, 1997. Vol. 59, Issue 1. P. 73–80. DOI: 10.1016 / s0960-8524 (96) 00124-1. |
15 | Kalyuzhnyi S.V. Batch anaerobic digestion of glucose and its mathematical modeling. II. Description, verification and application of model // Biores. Technol. 1997. Vol. 59, Issue 2-3. P. 249–258. DOI: 10.1016 / s0960-8524 (96) 00125-3. |