241

There is justification for a simulation model for assessing channel level protocols. The effect of the data link layer protocol parameters on the data transfer function is analyzed. The data link protocol parameters have been specified and split into two categories, which are customizable and not configurable. In the work, parameters such as the acceptable information frame size are related in detail to the tunable data link protocol parameter; service personnel format; time-out value; unconfirmed frame window size, etc. That nominal data transfer rate, error-correcting codes used, etc. are non-configurable parameters.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI 15-02-2021
  • Количество прочтений 238
  • Дата публикации 26-10-2020
  • Язык статьиIngliz
  • Страницы165-171
English

There is justification for a simulation model for assessing channel level protocols. The effect of the data link layer protocol parameters on the data transfer function is analyzed. The data link protocol parameters have been specified and split into two categories, which are customizable and not configurable. In the work, parameters such as the acceptable information frame size are related in detail to the tunable data link protocol parameter; service personnel format; time-out value; unconfirmed frame window size, etc. That nominal data transfer rate, error-correcting codes used, etc. are non-configurable parameters.

Имя автора Должность Наименование организации
1 Karimov S.S. Tashkent state technical university named after Islam Karimov
2 Cho Y.. 2Wave mechanics department South Korea Busan
Название ссылки
1 1. Tuchkin A.V. Principe of the channel level protocol for the packet transmission of heterogeneous traffic over low-speed channels // T-Comm: Telecommunications and transport. 2008. Т. 2. № 3. Pages 31-33.
2 2. Ponachugin A.V., Gusev I.V. Modeling of radio access systems in multiservice communication networks. Modeling, optimization and information technologies. 2018. Т. 6. № 1 (20). Pages 118-130.
3 3. Moshak N.N. Estimation of influence of protocols of an additional channel level on parameters of transport system of an info-communication network on technologies IP-KOS // Trudy of educational institutions of communication. 2006. № 175. Pages 62-72.
4 4. Menshikh V.V., Tolstikh A.V. // Software implementation of a simulation model of information security threats proliferation in a computer network based on the use of Petri networks // Collection: Information Counteraction to Extremism and Terrorism of the Material of the All-Russian Scientific and Practical Conference. 2015. Pages 124-127.
5 5. Kushnazarov, F.I. Model of organization of the repeated transmissions in the channels exposed to the interference // Modern science: actual problems of theory and practice. Series: Natural and Technical Sciences. 2015. № 12. Pages 62-67.
6 6. A.G. Kiryanov. Development and modeling of methods used in the protocols of the channel level of the wi-fi networks for the delivery of the real time video streams // Cand. A.A. Kharkevich RAS. Moscow, 2016.
7 7. Goncharova, D.S.; Ulyanov, A.V. Analysis of data transmission protocols in the backbone networks // Collection: Actual problems of info telecommunications in science and education collection of scientific articles in the international scientific-technical and scientific-methodical conference. 2016. Pages 335-338 (in Russian).
8 8. Vedenyapin V.I. Development of local information networks by means of Petri networks // In the collection: Actual problems of mathematical, natural science and technical knowledge: priority youth research in the material of the International scientific conference for students and young people in science and technology "Science 2020". 2018. Pages 166-170.
9 9. Yoon Z., Frese W., Briess K. Design and implementation of a narrow-band intersatellite network with limited onboard resources for IoT // Sensors. 2019. Т. 19. № 19. Page 4212.
10 10. Gupta V. On estimation across analog erasure links with and without acknowledgements//IEEE Transactions on Automatic Control. 2010. Т. 55. № 12. Pages 2896-2901.
11 11. Letor N., Blondia C. Cross-layer tuning of the neighbor sensing mechanism in mobile ad hoc networks // V sbornike: 2010 International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, ICUMT 2010 Moscow, 2010. Pages 784-789.
12 12. Oliveira R.M., Ribeiro M.V., Vieira A.B. Eplc-cmac: an enhanced cooperative mac protocol for broadband plc systems // Computer Networks. 2019. Т. 153. Pages 11-22.
13 13. Jabba M D., Labrador M.A. A data link layer in support of swarming of autonomous underwater vehicles // В сборнике: OCEANS '09 IEEE Bremen: Balancing Technology with Future Needs Bremen, 2009. Pages 250.
14 14. Lim K., Lim Y.H., Lee Y.H. Virtual cell in mobile computer communications // Computer Communications. 2009. Т. 20. № 7 Pages 586-598.
15 15. Kharat P., Kulkarni M. Congestion controlling schemes for high-speed data networks: a survey // Journal of High Speed Networks. 2019. Т. 25. № 1 Pages. 41-60.
16 16. Tramarin F., Mok A.K., Han S. Real-time and reliable industrial control over wireless lans: algorithms, protocols, and future directions // Proceedings of the IEEE. 2019. Т. 107. № 6 Pages 1027-1052.
В ожидании