The aim of this paper is to substantiate a new promising scientific direction in the classical theory of mechanisms and machines. Two new tasks were formulated and solved: the direct problem - the development of theoretical grounds and methods for calculating existing mechanical systems and mechanisms; the inverse problem - on the basis of theoretical results obtained when solving the direct problem, to develop a new generation of structures of mechanical systems and mechanisms with controlled parameters and links. The principles of precision vibromechanics have been widely used in solving these problems based on modern innovative ideas and technologies. The obtained scientific results and their engineering application laid the grounds for the development of a new generation of controlled mechanisms and machines, as well as for finding the ways of innovative breakthrough.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Karimov K.A. | Texnika fanlari doktori, Professor | 1Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan |
2 | Akhmedov A.K. | PhD | 1Tashkent State Technical University named after Islam Karimov, Tashkent, Uzbekistan |
№ | Название ссылки |
---|---|
1 | 1. Bansevichus R., Ragulskis K. Piezoelectric drives with several degrees of freedom for micromanipulators. – In: Papers of V World Congress on Theory of Machines and Mechanisms. - Montreal (Canada), 1979. Р. 827-830. |
2 | 2. Bansevichus R.J., Karimov K.A. Analysis and synthesis of friction mechanisms with the controlled parameters and ties // The theory of mechanisms and machines. Proceedings of the 9-th World congress, August 29 / September 1-2, 1995. Milano, ITALY. Vol. 1, p. 71-74. |
3 | 3. Bergstrasser M. Planeten getriebe mit ausmech selbarer Ubersetsung // Machinenbautechnik, 1981. № 4. Р. 309-311. |
4 | 4. Blekhman I.I. What can vibration do? On the "vibrational mechanics" and vibrational technology. / Monograph, Moscow, Lenand, 2017, 216 p. |
5 | 5. Blum E.Ya., Mikhailov Yu.A., Ozols R.Ya. Heat and mass transfer in a magnetic field. - Riga, 1980 .- 556 p. |
6 | 6. Bokov P.A., Grigoryev A.V., Trusov V.A., Bannov V.Ya., Naumova I.Yu. Comparative analysis of methods for measuring vibration parameters.//Proceedings of the international symposium on reliability and quality. - Moscow. 2019, P. 200-202. |
7 | 7. Vibration in technology. The reference book in 6 volumes. // Edited by Academician K.V. Frolov - M .: Mechanical Engineering, 1978-1981. V. 1-6. |
8 | 8. Golubkov V.A., Shishlakov V.A., Shishlakov V.F., Fedorenko A.G., Vataeva E.Yu. Calculation of forces exciting vibrations in a planetary gearbox.//J. “Questions of Radio Electronics”. No. 7, 2019. P. 98-105. |
9 | 9. Gulyntsev A.A., Krivolapov I.P. Methods of protection against vibration and the promising ways to reduce it // J. “Science and Education”. No. 2, 2019. P. 233.P. |
10 | 10. Drezig H., Holzweibig F. Dynamics of Machinery. – New York; London: Springer, 2010. Р. 544. |
11 | 11. Jijun Gu, Tianqi Ma & Menglan Duan. (2018) Effect of aspect ratio on the dynamic response of a fluid-conveying pipe using the Timoshenko beam model. Ocean Engineering. 114. P. 185–191. DOI: 10.1016 // j.oceaneng, 2016.01.021. |
12 | 12. Kamke E. Handbook of ordinary differential equations. 4th ed., Rev. - M.: Nauka: Phys. math. lit., 1971. - 576 p. |
13 | 13. Karimov K.A. Substantiation and development of possible approaches for creating controlled mechanisms of precision engineering.//Bulletin of Tula State University. Technical sciences. Issue 8. Part 2. P. 224-227, Tula, 2016. |
14 | 14. Karimov K.A., Аkhmedov A.X. Development and analytical realization of the mathematical model of controlled motion of a positioning mechanism. Part 1, 2015. №3 Р. 61-63. Part 2, 2015. №4 Р.63-66. // European Applied Sciences. – Stuttgart, Germany. |
15 | 15. Karimov K.A., Akhmedov A.Kh. Development and realization on the ECM of a mathematical model of a friction mechanism with a controlled connection in the contact zone // J. «Technical science and innovation», - Tashkent, 2018. P. 13-18. |
16 | 16. Karimov K.A., Karimov R.I., Akhmedov A.Kh. Development of the theoretical foundations of mechanisms with controlled parameters and links. / Monograph. “IQTISOD-MOLIYA”. - Tashkent, 2016. - 326 p. |
17 | 17. Karimov K., Rustamov R., Umurzakov A. Controlled Friction Variator // International Journal of Advanced Research in Science, Engineering and Technology. – India. Vol. 6. Issue 2, 2019. P. 8052 – 8055. ISSN: 2350 - 0328. |
18 | 18. Karimov K.A., Umurzakov A.Kh. Theory and design of friction mechanisms with controlled friction/ Monograph. - Tashkent, 2014, - 147 p. |
19 | 19. Karimov K.A., Umurzakov A.Kh., Akhmedov A.Kh. Prospects for the development of controlled precision mechanisms. From theory to constructions//Part I. The Uzbek journal "Problems of Mechanics" - Tashkent. № 2. 2018. P.55 – 59. Part II. No. 3. 2018. P. 39 - 44. |
20 | 20. Khudayarov B.A., Turaev F.Zh. (2019) Mathematical Simulation of Nonlinear Vibrations of Viscoelastic Pipelines Conveying Fluid. Applied Mathematical Modeling. 66. P. 662–679. DOI: 10.1016/j.apm. 2018.10.008. |
21 | 21. Kiyoshi O. Stages of the noncircular planetary gear mechanisms with nonuniform motion. – Bull, ISME, 1973. №99. Р. 1433-1442. |
22 | 22. Klyuev V.V. Precision vibromechanics and vibration engineering. Scientific School of K.M. Ragulskis. - M.: Publishing house "Spectrum", 2012. - 192 p. |
23 | 23. Lobanov D.V., Efremov I.M., Lobanova A.N., Sokolov A.P., Belov V.V. Modeling the process of mixing in vibrating mixers of various types. System technology methods. D.V. Lobanov et al. J. Process Modeling, 2019. No. 4 (44). P. 36–42. |
24 | 24. Morshinin V.M. Basics of minerals beneficiation. - M.: Subsoil, 1983. P. 84-104. |
25 | 25. Nagaev R.F. Periodic modes of vibration displacement. - M.: Nauka, 1998. - 160 p. |
26 | 26. Ragulskis K. Vibrotechnika 50/Monograph. - Kaunas, 2013. - 204 p. |
27 | 27. Ragulskis K. Virpesiai moksle, technikoje ir zmonijos progrese. - Kaunas, 2014. - 86 p. |
28 | 28. Ragulskis K.M., Ragulskis L.K. Oscillatory systems with dynamically directed vibration exciter. - L.: Mechanical Engineering, 1987. - 152 p. |
29 | 29. Sergienko V.P., Bukhorov S.N. Vibration and noise in non-stationary friction processes. // Minsk "Belarusian Navuka", 2012. - 346 p. |
30 | 30. Soyunov A.S., Mayorov V.S., Mayorova M.Yu. Determination of the optimal direction of vibration in tillage// J. “New Science: From Idea to Result”. No. 1-2. 2017. P. 187-189. |
31 | 31. Frolov K.V. Some oscillations problems of systems with variable and controlled parameters. Oscillations and stability of machines. - M.: Science, 1968. P. 75-82. |
32 | 32. Xia Tan, Xiao-Ye Mao, Hu Ding & Li-Qun Chen. (2018) Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. // Journal of Sound and Vibration. 428. P. 104–118. DOI: 10.1016/j.jsv.2018.04.041. |
33 | 33. Yamanin A.I. Balance and low-frequency vibration of two-cylinder twin-shaft engines. // J. “NAMI Proceedings” No. 1, 2019. P. 23-28. |
34 | 34. Yefremov I.M., Lobanov D.V., Figura K.N. The issue of balancing of eccentric-type vibrators // Advanced Materials, Structures and Mechanical Engineering: Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering, Incheon, South Korea, May 29–31, 2015. - London: CRC Press, 2016. P. 299–302. |
35 | 35. Yokoyama Y., Okabe S., Ishikawa Ken-I chi. Reduction of kinetic friction by harmonic vibration at arbitrary direction // Bull. JSME, 2014. №68. Р. 139-146. |
36 | 36. Zhi-Yuan Liu, Lin Wang & Xi-Ping Sun. (2018) Nonlinear Forced Vibration of Cantilevered Pipes Conveying Fluid.// Acta Mechanica Solida Sinica. 31(1). P. 32–50. DOI: 10.1007/s10338-018-0011-0. |