163

Ушбу тадқиқотнинг мақсади ғўзада маркерларга асосланган селекция (МАС) технологиясини жорий этиш асосида ғўзанинг тола узунлиги ва пишиқлиги юқори бўлган янги навларини яратишга қаратилган. Сўнгги ўн йил ичида ДНК маркерлари технологияларидан фойдаланиш толанинг сифат белгиларига бириккан QTL локусларини ва ғўза селекцияси учун тола сифати юқори донор линияларни аниқлашда муваффақиятли қўлланилди. Мақолада ғўза генофондини тадқиқ этиш учун ДНК маркер технологияларидан фойдаланиш имкониятлари ва афзалликлари муҳокама қилинди.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI03-02-2022
  • Количество прочтений163
  • Дата публикации06-08-2018
  • Язык статьиO'zbek
  • Страницы9
Ўзбек

Ушбу тадқиқотнинг мақсади ғўзада маркерларга асосланган селекция (МАС) технологиясини жорий этиш асосида ғўзанинг тола узунлиги ва пишиқлиги юқори бўлган янги навларини яратишга қаратилган. Сўнгги ўн йил ичида ДНК маркерлари технологияларидан фойдаланиш толанинг сифат белгиларига бириккан QTL локусларини ва ғўза селекцияси учун тола сифати юқори донор линияларни аниқлашда муваффақиятли қўлланилди. Мақолада ғўза генофондини тадқиқ этиш учун ДНК маркер технологияларидан фойдаланиш имкониятлари ва афзалликлари муҳокама қилинди.

Русский

Технология молекулярных маркеров обеспечивает улучшение стратегии отбора в селекции растений. В последнее десятилетие технологии ДНК маркеров были успешно использованы при идентификации локусов количественных признаков (QTL), связанных с качеством волокна, а также выявлении донорных линий с наилучшими качествами волокна для селекции хлопчатника. Обсуждается применение ДНК маркерных технологий для исследования генофонда хлопчатника.

English

Molecular marker technology offers accelerated selection strategies in plant breeding. In the recent decade, the DNA marker technology has been used successfully in identifying the quantitative trait loci (QTLs) associated with fiber quality and donor lines (with superior quality) with the best fiber qualities for cotton selection. The use of DNA marker technologies for the study of the cotton gene pool has been discussed as well.

Название ссылки
1 Abdalla A.M., O.U.K. Reddy, K.M. El-Zik, and A.E. Pepper. 2001. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor. Appl. Genet. 102:222–229.
2 Abdurakhmonov I.Y., S. Saha, J.N. Jenkins, Z.T. Buriev, S.E. Shermatov, B.E. Scheffler, A.E. Pepper, J.Z. Yu, R.J. Kohel, and A. Abdukarimov. 2009. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genetica 136:401-417.
3 Abdurakhmonov I.Y. 2002. Molecular cloning of new DNA-markers for marker-assisted selection of cotton. PhD dissertation. Institute of Genetics and Plant Experimental Biology, Academy of Uzbek Sciences, Tashkent, Uzbekistan.
4 Abdurakhmonov I.Y. 2007. Exploiting genetic diversity. In: Ethridge D (ed). Plenary Presentations and Papers. Proceedings of World Cotton Research Conference-4; 2007 Sept 10-14; Lubbock, TX, USA.
5 Abdurakhmonov I.Y., Z.T. Buriev, S.E. Shermatov, A. Abdukarimov, S. Saha, J.N. Jenkins, R.J. Kohel, J.Z. Yu, A.E. Pepper. 2010. Molecular diversity and population structure analysis in a global set of G. hirsutum exotic and variety germplasm resources and association mapping f the main fiber quality traits. S10. pg. 22. Proceedings of International Cotton Genome Initiative conference, Canberra, Australia, 2010.
6 Abdurakhmonov I.Y., R.J. Kohel, J.Z. Yu, A.E. Pepper, A.A. Abdullaev, F.N. Kushanov, I.B. Salakhutdinov, Z.T. Buriev, S. Saha, B.E. Scheffler, J.N. Jenkins, and A. Abdukarimov. 2008. Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 98: 478-487.
7 Abdurakhmonov I.Y., Z.T. Buriev, I.B. Salakhuddinov, S.M. Rizaeva, A.T. Adylova, S.E. Shermatov, A. Adukarimov, R.J. Kohel, J.Z. Yu, A.E. Pepper, S. Saha, and J.N. Jenkins. 2006. Characterization of G. hirsutum wild and variety accessions from Uzbek cotton germplasm collection for morphological and fiber quality traits and database development. p. 5306. In Proc. Cotton Beltwide Conf., San Antonio, TX. 3–6 Jan. 2006.
8 Bowman D.T., O. L. May, and D. S. Calhoun.1996. Genetic base of upland cotton cultivars released between 1970 and 1990. Crop Sci 36:577-581.
9 Bowman D.T., O. L. May, and J. B. Creech. 2003. Genetic uniformity of the U.S. upland cotton crop since the introduction of transgenic cottons. Crop Sci 43:515-518.
10 Chen Z.J., B. E. Scheffler, E. Dennis, B. A. Triplett, T. Zhang, W. Guo et al., 2007. Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303-1310
11 deVicente, M. C, S. D. Tanksley. 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 134:585–96
12 Tanksley S.D., N.D. Young., A.H. Paterson., M.W. Bonierbale. 1989. RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–64
13 Van Esbroeck, G. A., D.T. Bowman, D. S. Calhoun, and O. L. May. 1998. Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Sci. 38:33-37.
14 Van Esbroeck, G. A., D.T. Bowman, O. L. May and D. S. Calhoun. 1999. Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci. 39:323-328.
15 Zeven A. C., D.R. Knott, R. Johnson. 1983. Investigation of linkage drag in near isogenic lines of wheat by testing for seedling reaction to races of stem rust, leaf rust and yellow rust. Euphytica 32:319–27
В ожидании