Ushbu maqolada sanoat korxonalari va aholi punktlari suv ta’minoti tizimida qoʻllaniladigan nasos agregatlarida chastota oʻzgartgich orqali rostlanadigan asinxron motorlarning oʻtish jarayonlari batafsil ko‘rib chiqilgan, energiya tejamkor ish rejimlari chuqur tadqiq etilib, matematik modellashtirish natijalari olingan. Chastotali rostlanadigan asinxron motorlarning oʻtish jarayonlari tadqiqot predmeti sifatida tanlangan boʻlib, unda kuzatiladigan kamchiliklarga chuqur matematik analiz orqali yechim topish maqsad qilindi. Shu vaqtgacha ushbu sohada olib borilgan ishlar, asosan, chastotali rostlash usuli statik momenti past boʻlgan meliorativ quvurlar tizimida olib borilganligi hamda olingan natijalar va qoʻllanish usullari har doim ham statik momenti yuqori boʻlgan sanoat korxonalari quvurlar tizimiga toʻgʻridan-toʻgʻri tatbiq etib boʻlmasligi hisob olinsa, mazkur ishning dolzarbligi yanada oshadi. Tadqiqot metodi sifatida amalda mavjud nasos agregatlarini boshqarish usullarining oʻziga xos jihatlari oʻrganilgan. Asinxron motor oʻtish jarayonlarining matematik modeli quvurda hosil boʻladigan statik qarshilik va ishqalanish momentini hisobga olib, Kramer usulidan foydalanilgan holda tuzilgan. Asinxron motor dinamik xarakteristikasida tebranishli jarayon hisobga olingan va matritsalar tuzilgan hamda yakuniy yechimga olib kelingan. Ishning natijasi sifatida asinxron motor stator chulgʻamining har bir fazasida roʻy beradigan oʻtish jaroyonlarining tebranish holatini hisobga olgan holda, matematik ifoda va ushbu funksiya grafi gi hosil qilingan. Olingan natijalarni kelgusida statik bosimi yuqori quvurlar tizimida energetik quvvati 100 kW dan past boʻlgan nasos agregatlarida chastotali rostlash va uning energiya samaradorligini oshirishda qoʻllash mumkin. Tadqiqot yakunida tajriba olib borilgan sanoat korxonalarining yuqori statik momenti mavjud quvurlar tizimida chastotali rostlash usulidagi elektromexnik oʻzgartirish parametrlari tahlil qilinib, asinxron motorlarning energetik koʻrsatkichlari aniqlandi.
Ushbu maqolada sanoat korxonalari va aholi punktlari suv ta’minoti tizimida qoʻllaniladigan nasos agregatlarida chastota oʻzgartgich orqali rostlanadigan asinxron motorlarning oʻtish jarayonlari batafsil ko‘rib chiqilgan, energiya tejamkor ish rejimlari chuqur tadqiq etilib, matematik modellashtirish natijalari olingan. Chastotali rostlanadigan asinxron motorlarning oʻtish jarayonlari tadqiqot predmeti sifatida tanlangan boʻlib, unda kuzatiladigan kamchiliklarga chuqur matematik analiz orqali yechim topish maqsad qilindi. Shu vaqtgacha ushbu sohada olib borilgan ishlar, asosan, chastotali rostlash usuli statik momenti past boʻlgan meliorativ quvurlar tizimida olib borilganligi hamda olingan natijalar va qoʻllanish usullari har doim ham statik momenti yuqori boʻlgan sanoat korxonalari quvurlar tizimiga toʻgʻridan-toʻgʻri tatbiq etib boʻlmasligi hisob olinsa, mazkur ishning dolzarbligi yanada oshadi. Tadqiqot metodi sifatida amalda mavjud nasos agregatlarini boshqarish usullarining oʻziga xos jihatlari oʻrganilgan. Asinxron motor oʻtish jarayonlarining matematik modeli quvurda hosil boʻladigan statik qarshilik va ishqalanish momentini hisobga olib, Kramer usulidan foydalanilgan holda tuzilgan. Asinxron motor dinamik xarakteristikasida tebranishli jarayon hisobga olingan va matritsalar tuzilgan hamda yakuniy yechimga olib kelingan. Ishning natijasi sifatida asinxron motor stator chulgʻamining har bir fazasida roʻy beradigan oʻtish jaroyonlarining tebranish holatini hisobga olgan holda, matematik ifoda va ushbu funksiya grafi gi hosil qilingan. Olingan natijalarni kelgusida statik bosimi yuqori quvurlar tizimida energetik quvvati 100 kW dan past boʻlgan nasos agregatlarida chastotali rostlash va uning energiya samaradorligini oshirishda qoʻllash mumkin. Tadqiqot yakunida tajriba olib borilgan sanoat korxonalarining yuqori statik momenti mavjud quvurlar tizimida chastotali rostlash usulidagi elektromexnik oʻzgartirish parametrlari tahlil qilinib, asinxron motorlarning energetik koʻrsatkichlari aniqlandi.
В данной статье подробно рассмотрены переходные процессы асинхронных двигателей, регулируемых частотным преобразователем в насосных агрегатах, применяемых в системах водоснабжения промышленных предприятий и населённых пунктов, получены результаты математического моделирования энергоэффективных режимов работы. В качестве предмета исследования были взяты переходные процессы асинхронных двигателей с частотной регулировкой, рациональное использование электроэнергии в тот период, когда наблюдается дефицит энергии, выбрана актуальной цель поиска решения путём глубокого математического анализа недостатков, наблюдаемых в предмете исследования. Актуальность данной работы вновь возрастает, если учесть, что до сих пор работы в данной области проводились в основном в мелиоративных трубопроводных системах с низким статическим крутящим моментом, а полученные результаты и методы применения не всегда могут быть напрямую применены к трубопроводным системам промышленных предприятий с высоким статическим крутящим моментом. Исследовательскими методами специфических аспектов стали существующие практические методы управления насосными агрегатами, при построении математической модели переходных процессов асинхронного двигателя с учётом статического сопротивления и момента трения, создаваемого в трубе, использовался метод Крамера. В динамической характеристике асинхронного двигателя матрицы строятся с учётом колебательного процесса и доводятся до окончательного решения. Результатом работы стало математическое выражение, представляющее переходные процессы, протекающие в каждой из фаз статора асинхронного двигателя с учётом колебательного состояния, и график этой функции. На основе полученных результатов в дальнейшем возможно применение метода частотной коррекции в трубопроводных системах с повышенным статическим давлением, насосных агрегатах с энергоёмкостью менее 100 кВт, в целях повышения их энергоэффективности. По итогам исследования были определены энергетические показатели асинхронных двигателей путём анализа параметров электромеханических преобразователей методом частотной регулировки в системе трубопроводов с высоким статическим крутящим моментом промышленных предприятий, на которых проводился эксперимент.
The article scrutinizes the transients of asynchronous engines regulated by a frequency converter in pumping units used in water supply systems of industrial enterprises and settlements and presents the results of mathematical modelling of energy-efficient operating modes. Transients of asynchronous motors with frequency control and rational use of electricity during periods of shortage of energy were taken as the subject of the research; the actual goal of the sought-after solution was chosen by means of a fundamental mathematical analysis of the shortcomings observed in the subject of the study. The relevance of this work increases again if we take into account the fact that the work carried out in this area has been so far implemented mainly in reclamation pipeline systems with low static torque; however, the results and methods of application cannot always be directly applied to pipeline systems of industrial enterprises with high static torque. Being a research method, specific aspects of existing methods of control of pumping units were studied in practice. When constructing a mathematical model of the transient processes of an asynchronous motor, the Kramer method was used to account for the static resistance and the moment of friction created in the pipe. In the dynamic characteristic of an asynchronous motor, matrices are constructed with an account of the oscillatory process and brought to a final decision. The outcome of the work was a mathematical expression representing transients occurring in every phase of the asynchronous motor stator, taking account of the oscillatory state, and a graph of this function. The research findings will enable the use of the frequency correction method in pipeline systems with increased static pressure and pumping units with an energy consumption of less than 100 kW to increase their energy efficiency. According to the research findings, the energy indicators of asynchronous motors were determined by analyzing the parameters of electromechanical converters by means of frequency adjustment in the pipeline system with high static torque in industrial enterprises where the experiment took place.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Pirmatov N.B. | prоfessоr | Tоshkent dаvlаt texnikа universiteti |
2 | Xaydarov X.M. | tayanch doktorant | Andijon mashinasozlik instituti |
№ | Название ссылки |
---|---|
1 | Alimxodjayev, K., Pirmatov, N., & Ziyoxo‘jayev, T. (2018). Elektr mashinalari. Tashkent: Fan va texnologiya Publ. |
2 | Baratov, R., Pirmatov, N., Panoev, A., & Chulliyev, Y. (2021). Achievement of electric energy savings through controlling frequency convertor in the operation process of asynchronous motors in textile enterprises. Proceedings of the IOP Conference. |
3 | Berdiyarovich, P., Xofizovich, A., & Baxtiyorovich, X. (2018). Topical conveyors are mathematical modelsof asynchronous motors. European Science Review. |
4 | Boikhanov, Z. (2022). Effect of changes in the active resistance of stator windings of an asynchronous electric motor on the output signal of a three-phase current converter. Chemical Technology. Control and Management, 1(103), 48-52. |
5 | Boixanov, Z. (2021, December). GES asinxron dvigatellarining nosimmetrik rejimlari [Symmetric modes of HPP asynchronous motors]. O‘zbekgidroenergetika – Uzbek Hydropower(2), 27-28. |
6 | Boixanov, Z. (2022). Boshqariluvchan chiqish kuchlanishli tok o‘zgartkichlarining dinamik tavsi- flari [Dynamic characteristics of current converters with controlled output voltage]. Science and Innovative Development(2). doi:10.36522/21819 |
7 | Boixonov, Z. (2021). Elektr ta’minoti tizimida reaktiv quvvat manbalari parametrlari [Parameters of reactive power sources in the power supply system]. Machine Building, 3(4), 49-53. |
8 | Boykhonov, Z., & Makhsudov, M. (2018). Issledovaniye elektromagnitnykh preobrazovateley toka v napryazheniye [Research of electromagnetic current-to-voltage converters]. Bulletin of Science and Practice, 3(4), 150-154. |
9 | Brindley, K. (1991). Measuring transducers. (E. Sycheva, trans.) Moscow: Energoatomizdat Publ. |
10 | Bаrаtоv, R., Pirmаtоv, N., Pаnоev, А., Ruziyev, S., & Mustаfоqulоv, А. (2021). Аchievement оf electric energy sаvings thrоugh cоntrоlling frequency cоnvertоr in the оperаtiоn prоcess оf аsynchrоnоus mоtоrs in textile enterprises. Proceedings of the IОP Cоnference. Series: Mаteriаls Science аnd Engineeringthis link is disаbled, 1030 (1), стр. 012161. |
11 | Dzhikaev, G. (2004). Measuring converters of high alternating currents in the electric power industry. PhD thesis, Ulyanovsk. |
12 | Mаtqоsimоv, M., & Muhаmаdjоnоv, S. (2023). Using the аsynchrоnоus mоtоr in generаtоr mоde in smаll-cаpаcity hydrоelectric pоwer plаnts. Proceedings of the Internаtiоnаl Cоnference оn Electricаl Engineering & Cоmputing Cоnvergence аnd Аpplicаtiоns. |
13 | Pirmatov, N., & Panoev, A. (2020). Frequency control of asynchronous motors of looms of textile enterprises. Proceedings of the E3S Web of Conferences. |
14 | Pirmatov, N., Mahamadjonov, S., & Matkosimov, M. (2023). Use of asynchronous motor in generator mode at small power hydroelectric power stations. O‘zbekgidroenergetika – Uzbek hydropower, 1(17). |
15 | Pirmatov, N., Mahamadjonov, S., & Matkosimov, M. Importance of mini hydroelectric power stations in the use of small potential water energy. |
16 | Pirmаtоv, N., & Pаnоev, А. (2020). Frequency cоntrоl оf аsynchrоnоus mоtоrs оf lооms оf textile enterprises. Proceedings of the E3S Web оf Cоnferences, 216, р. 01120. |
17 | Siddikov, I., Malikov, A., Makhsudov, M., Boikhanov, Z., & Uzaqov, R. (2022). Study of the static characteristics of the secondary stator voltage converter of the currents of an induction motor. Proceedings of the AIP Conference, 2432, р. 020003. doi:10.1063/5.0089681 |
18 | Slezhanovskiy, O., Datskovskiy, L., Kuznetsov, I., Lebedov, Y., & Tarasenko, L. (2015). Sistemy podchinennogo regulirovaniya elektroprivoda peremennogo toka s ventil’nymi [Subordinate control systems for AC electric drives with valves]. Moscow: Energoatomizdat. |
19 | Sokolov, M., & et al. (1967). Elektromagnitnyye perekhodnyye protsessy v asinkhronnom elektroprivode [Electromagnetic transient processes in an asynchronous electric drive]. Energiya Publ. |
20 | Sokolov, M., Petrov, L., Masandilov, L., & Ladenzon, V. (2017). Elektromagnitnyye perekhodnyye protsessy v asinkhronnom elektroprivode [Electromagnetic transient processes in an asynchronous electric drive]. Moscow: Energy Publ. |
21 | Sаlimоv, J., & Pirmаtоv, N. (2011). Elektr mаshinаlаr. Tаshkent. |
22 | Toirov, O., Alimkhodjaev, K., Pirmatov, N., & Kholbutaeva, A. (2020). Mathematical model to take into account the influence of saturation of the magnetic circuit on the starting characteristics of a synchronous motor. Proceedings of the E3S Web of Conferences. |
23 | Trzynadlowski, A. (2000). Control of induction motors (1st ed.). |
24 | Zavgorodniy, V., Chuchman, Y., & Voloshansky, E. (1985). RF Patent № 1182605. |