№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Sadikov J.I. | Dotsent | Tashkent State Transport University |
2 | Imamaliyev D.M. | Doctoral student | Tashkent State Transport University |
№ | Название ссылки |
---|---|
1 | 1. Global status report on road safety 2018. - Geneva: World Health Organization, 2018. - ISBN 978-92-4-156568-4. 5 p. http://who.int/publications/i/item/9789241565684. [2]. Imamaliev D.M., Urakov A.H., Darabov M., Sayfutdinova R.A. (2021) “Important risk factors for road accidents” // E3S Web of Conferences 264, E3S Web Conf. Volume 264, 2021 International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021). - 02 June. – 02025 p. http://doi.org/10.1051/e3sconf/202126402025. |
2 | [3]. ENVISAGING THE ROAD ACCIDENTS USING REGRESSION ANALYSIS. (n.d.). Retrieved August 20, 2021, from https://www.researchgate.net/publication/350089319_ENVISAGING_THE_ROAD_ACCIDEN TS_USING_REGRESSION_ANALYSIS |
3 | 4. Tao, L., Zhu, D., Yan, L., & Zhang, P. (2015). The traffic accident hotspot prediction: Based on the logistic regression method. ICTIS 2015 - 3rd International Conference on Transportation Information and Safety, Proceedings, 107–110. https://doi.org/10.1109/ICTIS.2015.7232194 |
4 | 5.]. Sodikov, J., Imamaliev, D. and Urakov, A. (2021) STUDY OF SOCIAL RISKS BASED ON THE MODEL OF SMEED FOR THE EVALUATION OF ACCIDENTS ON THE HIGHWAY OF REPUBLIC OF UZBEKISTAN, 1. Available at: https://www.researchgate.net/publication/352836831_STUDY_OF_SOCIAL_RISKS_BASED_ ON_THE_MODEL_OF_SMEED_FOR_THE_EVALUATION_OF_ACCIDENTS_ON_THE_ HIGHWAY_OF_REPUBLIC_OF_UZBEKISTAN |
5 | 6. Chaudhari, D. (2021). Modelling Road Accident using Poisson regression Models. International Journal for Research in Applied Science and Engineering Technology, 9(VI), 4635– 4640. https://doi.org/10.22214/IJRASET.2021.35827 |
6 | 7]. García de Soto, B., Bumbacher, A., Deublein, M., & Adey, B. T. (2018). Predicting road traffic accidents using artificial neural network models. Infrastructure Asset Management, 5(4), 132–144. https://doi.org/10.1680/JINAM.17.00028 |
7 | [8]. Yun, C.-Y., & Bae, Y.-C. (2021). Prediction of traffic accidents using artificial neural networks. Journal of Korean Institute of Intelligent Systems, 31(2), 171–176. https://doi.org/10.5391/JKIIS.2021.31.2.171 |
8 | [9]. Alkheder, S., Taamneh, M., & Taamneh, S. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1), 100–108. https://doi.org/10.1002/FOR.2425 |
9 | [10]. Lu, T. (2015) The traffic accident hotspot prediction Based on the logistic regression method. The 3rd International Conference on Transportation Information and Safety. https://doi.org/10.1109/ICTIS.2015.7232194 |
10 | [11]. Ding, D. et al. (2012) ‘The Relationship between the Traffic Accidents and Meteorological Condition on Beijing-Tianjin-Tanggu Expressway’, Applied Mechanics and Materials, 188, pp. 300–307. https://doi.org/10.4028/www.scientific.net/AMM.188.300 |
11 | [12]. Kulinskaya, E., Dollinger, M. B., & Bjørkestøl, K. (2011). On the moments of Cochran’s Q statistic under the null hypothesis, with application to the meta-analysis of risk difference. Research Synthesis Methods, 2(4), 254–270. https://doi.org/10.1002/jrsm.54 |
12 | [13]. Gates, S., Fisher, J. D., Cooke, M. W., Carter, Y. H., & Lamb, S. E. (2008). Multifactorial assessment and targeted intervention for preventing falls and injuries among older people in community and emergency care settings: systematic review and meta-analysis. BMJ, 336(7636), 130–133. https://doi.org/10.1136/BMJ.39412.525243.BE |
13 | [14]. Lin, W., Gong, L., Xia, M., & Dai, W. (2018). Prevalence of posttraumatic stress disorder among road traffic accident survivors: A PRISMA-compliant meta-analysis. Medicine, 97(3). https://doi.org/10.1097/MD.0000000000009693 |
14 | [15]. Asgarian, F. S., Namdari, M., & Soori, H. (2019). Worldwide prevalence of alcohol in fatally injured motorcyclists: A meta-analysis. 20(7), 685–689. https://doi.org/10.1080/15389588.2019.1637519 |
15 | [16]. Høye, A. (2010). Are airbags a dangerous safety measure? A meta-analysis of the effects of frontal airbags on driver fatalities. Accident Analysis & Prevention, 42(6), 2030–2040. https://doi.org/10.1016/J.AAP.2010.06.014 |
16 | [17]. Wang, Y., Li, L., Feng, L., & Peng, H. (2014). Professional drivers’ views on risky driving behaviors and accident liability: A questionnaire survey in Xining. Transportation Letters, 6(3), 126–135. https://doi.org/10.1179/1942787514Y.0000000019 |
17 | 18]. Ozkan T, Lajunen T, Summala H. Driver Behaviour Questionnaire: a follow-up study. Accid Anal Prev. 2006 Mar;38(2):386-95. http://doi.org/10.1016/j.aap.2005.10.012. Epub 2005 Nov 28. PMID: 16310749. |
18 | [19]. Af Wåhlberg AE. Social desirability effects in driver behavior inventories. J Safety Res. 2010 Apr;41(2):99-106. http://doi.org/10.1016/j.jsr.2010.02.005. Epub 2010 Mar 30. PMID: 20497795. |
19 | [20]. Özkan, Türker & Lajunen, Timo. (2005). A new addition to DBQ: Positive Driver Behaviours Scale. Transportation Research Part F: Traffic Psychology and Behaviour. 8. 355-368. http://doi.org/10.1016/j.trf.2005.04.018. |
20 | [21]. Nordfjærn, T., Jørgensen, S., & Rundmo, T. (2011). A cross‐cultural comparison of road traffic risk perceptions, attitudes towards traffic safety and driver behaviour. Journal of Risk Research, 14(6), 657–684. https://doi.org/10.1080/13669877.2010.547259 |
21 | [22]. COCHRAN, W. G. (1950) ‘THE COMPARISON OF PERCENTAGES IN MATCHED SAMPLES’, Biometrika, 37(3–4), pp. 256–266. https://doi.org/10.1093/biomet/37.3- 4.256 |