146

Jahonda shо‘r suvdan chuchuk suv olishning turli usullari qо‘llaniladi. Chuchuklantirish jarayoniga katta miqdordagi energiya talab etilganligi sababli, qayta tiklanuvchi energiya manbalari, xususan quyosh energiyasidan foydalanib chuchuk suv olish dolzarb masalalardan biri hisoblanadi. Quyosh suv chuchutgichlarining unumdorligi quyosh nurlanish intensivligi, shamol tezligi, bug‘latish kamerasidagi suv sathiga va shaffof qoplamani о‘rnatilish burchagiga bog‘liq bо‘lib, ushbu omillarni tо‘g‘ri tanlash orqali quyosh suv qurilmalarining unumdorligini optimallashtirish mumkin. Shuningdek quyosh suv chuchutgich qurilmalarida bug‘ni kondensatsiyalanish tezligini oshirish yordamida ham unumdorlikni oshirish mumkin. Ushbu tadqiqot ishida quyosh chuchutgich qurilmasida kondensatsiyalanish tezligini oshirish hisobiga unumdorlikni oshirishning tо‘rtta usuli taklif etilgan. Ushbu usullar bо‘yicha olib borilgan tadqiqot ishlarining tahlili hamda usullarni unumdorlikka ta’sirlarini qiyosiy natijalari keltirilgan. Ushbu tadqiqot ishida keltirilgan ma’lumotlardan quyosh suv chuchutgich qurilmalarining unumdorligini oshirishda foydalanish mumkin.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI 18-05-2024
  • Количество прочтений 146
  • Дата публикации 14-06-2023
  • Язык статьиO'zbek
  • Страницы87-95
Ўзбек

Jahonda shо‘r suvdan chuchuk suv olishning turli usullari qо‘llaniladi. Chuchuklantirish jarayoniga katta miqdordagi energiya talab etilganligi sababli, qayta tiklanuvchi energiya manbalari, xususan quyosh energiyasidan foydalanib chuchuk suv olish dolzarb masalalardan biri hisoblanadi. Quyosh suv chuchutgichlarining unumdorligi quyosh nurlanish intensivligi, shamol tezligi, bug‘latish kamerasidagi suv sathiga va shaffof qoplamani о‘rnatilish burchagiga bog‘liq bо‘lib, ushbu omillarni tо‘g‘ri tanlash orqali quyosh suv qurilmalarining unumdorligini optimallashtirish mumkin. Shuningdek quyosh suv chuchutgich qurilmalarida bug‘ni kondensatsiyalanish tezligini oshirish yordamida ham unumdorlikni oshirish mumkin. Ushbu tadqiqot ishida quyosh chuchutgich qurilmasida kondensatsiyalanish tezligini oshirish hisobiga unumdorlikni oshirishning tо‘rtta usuli taklif etilgan. Ushbu usullar bо‘yicha olib borilgan tadqiqot ishlarining tahlili hamda usullarni unumdorlikka ta’sirlarini qiyosiy natijalari keltirilgan. Ushbu tadqiqot ishida keltirilgan ma’lumotlardan quyosh suv chuchutgich qurilmalarining unumdorligini oshirishda foydalanish mumkin.

Имя автора Должность Наименование организации
1 Aliyarova L.A. PhD Qarshi muhandislik-iqtisodiyot instituti
2 Raximov N.Z. doktorant Qarshi muhandislik-iqtisodiyot instituti
Название ссылки
1 [1] Dashtban M., Tabrizi F.F. Thermal analysis of a weir-type cascade solar still integrated with PCM storage, Desalination, 2011. p. 415-422.
2 [2] Esmaeilion F. Hybrid renewable energy systems for desalination. Applied Water Science, 2020. 10:84. p. 1-47.
3 [3] Talbert S.G., Eibling J.A., Lof G.O.G., Manual on Solar Distillation of Saline Water, Office of Saline Water, Research and Development Progress Report, 546, 1970.
4 [4] Arunkumar T., Raj K., Dsilva Winfred Rufuss, Denkenberger D., Tingting G., Xuan L. A Review of Efficient High Productivity Solar Stills, 101. Elsevier Ltd. Renewable and Sustainable Energy Reviews, 101, 2019. p. 197-220.
5 [5] Chauhan V.K., Shukla S.K., Tirkey J.V. A comprehensive review of direct solar desalination techniques and its advancements. Journal of Cleaner Production, 2020, 124719.
6 [6] Nadal-Bach J., Bruno J.C. et all. Solar stills and evaporators for the treatment of agroindustrial liquid wastes: A review. Renewable and Sustainable Energy Reviews, 142, 2021. 110825.
7 [7] Tiwari G., Sumegha C., Yadav Y. Effect of water depth on the transient performance of a double basin solar still. Energy Convers. Manag. 1991, 32, 293-301.
8 [8] Manokar A.M., Taamneh Y., Winston D.P., Vijayabalan P., Balaji D., Sathyamurthy R., Sundar S.P., Mageshbabu D. Effect of water depth and insulation on the productivity of an acrylic pyramid solar still-An experimental study. Groundw. Sustain. Dev. 2020, 10, 100319.
9 [9] Kumar S., Tiwari G., Singh H. Annual performance of an active solar distillation system. Desalination 2000, 127, 79-88.
10 [10] Khalifa A.J. On the effect of cover tilt angle of the simple solar still on its productivity in different seasons and latitudes. Energy Convers. Manag. 2011, 52, 431-436.
11 [11] Rahbar N., Esfahani J.A. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination 2012, 284, 55-61.
12 [12] Al-Hinai H., Al-Nassri M., Jubran B. Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Convers. Manag. 2002, 43, 1639-1650.
13 [13] Zurigat Y.H., Abu-Arabi M.K. Modelling and performance analysis of a regenerative solar desalination unit. Appl. Therm. Eng. 2004, 24, 1061-1072.
14 [14] Tiwari G.N., Bapeshwararao V. Transient performance of a single basin solar still with water flowing over the glass cover. Desalination 1984, 49, 231-241.
15 [15] Lawrence S., Gupta S., Tiwari G. Effect of heat capacity on the performance of solar still with water flow over the glass cover. Energy Convers. Manag. 1990, 30, 277-285
16 [16] Tiwari G., Sinha S. Parametric studies of active regenerative solar still. Energy Convers. Manag. 1993, 34, 209-218.
17 [17] Abu-Hijleh B.A.K. Enhanced solar still performance using water film cooling of the glass cover. Desalination 1996, 107, 235-244.
18 [18] Bhardwaj R., Kortenaar M.T., Mudde R. Maximized production of water by increasing area of condensation surface for solar distillation. Appl. Energy 2015, 154, 480-490
19 [19] Bhardwaj R., Kortenaar M.T., Mudde R. Inflatable plastic solar still with passive condenser for single family use. Desalination 2016, 398, 151-156.
20 [20] Bhardwaj R., Kortenaar M.T., Mudde R. Influence of condensation surface on solar distillation. Desalination 2013, 326, 37-45.
21 [21] Zanganeh P., Goharrizi A.S., Ayatollahi S., Feilizadeh M. Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination 2019, 454, 1-9.
22 [22] Zanganeh P., Goharrizi A.S., Ayatollahi S. Feilizadeh, M. Nano-coated condensation surfaces enhanced the productivity of the single-slope solar still by changing the condensation mechanism. J. Clean. Prod. 2020, 265, 121758.
23 [23] Khanmohammadi S., Khanjani S. Experimental study to improve the performance of solar still desalination by hydrophobic condensation surface using cold plasma technology. Sustain. Energy Technol. Assess. 2021, 45, 101129.
24 [24] Fath H.E., Elsherbiny S.M. Effect of adding a passive condenser on solar still performance. Energy Convers. Manag. 1993, 34, 63-72.
25 [25] Nijegorodov N., Jain P.K., Carlsson S. Thermal-electrical, high efficiency solar stills. Renew. Energy 1994, 4, 123–127.
26 [26] Sathyamurthy R., El-Agouz S.A., Dharmaraj V. Experimental analysis of a portable solar still with evaporation and condensa-tion chambers. Desalination 2015, 367, 180-185
27 [27] El-Samadony Y.A.F., Abdullah A.S., Omara Z.M. Experimental Study of Stepped Solar Still Integrated with Reflectors and Ex-ternal Condenser. Exp. Heat Transfer. 2014, 28, 392-404.
28 [28] Omara Z., Kabeel A., Essa F. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers. Manag. 2015, 103, 965-972.
29 [29] Mohaisen H.S., Esfahani J.A., Ayani M.B. Effect of condensing cavity on the performance of a passive solar desalination system: An experimental study. Environ. Sci. Pollut. Res. 2021, 28, 5080-5091.
30 [30] Kumar R.A., Esakkimuthu G., Murugavel K.K. Performance enhancement of a single basin single slope solar still using agitation effect and external condenser. Desalination 2016, 399, 198-202.
31 [31] Patel S.K., Singh D., Devnani G.L., Sinha S., Singh D. Potable water production via desalination technique using solar still inte-grated with partial cooling coil condenser. Sustain. Energy Technol. Assess. 2021, 43, 100927.
В ожидании