Binoga integratsiyalashgan fotoelektrik panellar tizimlari qo‘llanilishi, adabiyotlarda ushbu sohadagi tadqiqotlarning hozirgi holatini hisobga olgan holda talqin qilingan. Ushbu maqolada barcha tadqiqot ishlari ikki xil bosqichga bo‘lingan. Birinchi bosqichda binolarda qo‘llaniladigan standart holatdagi fotoelektrik modullar tizimini ishlab chiqish. Ikkinchi bosqichda standart holatdagi fotoelektrik panellarning issiqlik va elektrik parameterlarini xususiyatlarini o‘lchash uchun qo‘llaniladigan eksperimental qurulmalarning xarakteristikalarining xususiyatlari o‘rganilgan. Binoning ichki qismidagi asosiy issiqlik harakati yoki issiqlik yo‘qotilishlari energiya samaradorligiga asoslanadi.
Binoga integratsiyalashgan fotoelektrik panellar tizimlari qo‘llanilishi, adabiyotlarda ushbu sohadagi tadqiqotlarning hozirgi holatini hisobga olgan holda talqin qilingan. Ushbu maqolada barcha tadqiqot ishlari ikki xil bosqichga bo‘lingan. Birinchi bosqichda binolarda qo‘llaniladigan standart holatdagi fotoelektrik modullar tizimini ishlab chiqish. Ikkinchi bosqichda standart holatdagi fotoelektrik panellarning issiqlik va elektrik parameterlarini xususiyatlarini o‘lchash uchun qo‘llaniladigan eksperimental qurulmalarning xarakteristikalarining xususiyatlari o‘rganilgan. Binoning ichki qismidagi asosiy issiqlik harakati yoki issiqlik yo‘qotilishlari energiya samaradorligiga asoslanadi.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Nasrullayev Y.Z. | doktorant (PhD) | Qarshi muhandislik-iqtisodiyot instituti |
№ | Название ссылки |
---|---|
1 | [1] D. Bigot. F. Miranville. A. H. Fakra. I. Ingar. S. Guichard and H. Boyer., “Thermal Performance of Photovoltaic Systems Integrated in Buildings,” Sol. Collect. Panels, Theory Appl., 2010, doi: 10.5772/10347. |
2 | [2] Yu.Z.Nasrullayev, “Quyosh batareyalarni parametrlari o‘lchash uchun kichik o‘lchamli quyosh simulyatorining nurlanish xarakteristikasi,” Innov. texnologiyalar, Maxsus son, 2022, ISSN 2181-4732, pp. 118–121. |
3 | [3] A. Tiwari and M. S. Sodha, “Parametric study of various configurations of hybrid PV/thermal air collector: Experimental validation of theoretical model,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 1, pp. 17–28, 2007, doi: 10.1016/j.solmat.2006.06.061. |
4 | [4] Sauer K.J. Roessler T. & Hansen C.W. (2015)., “Modeling the Irradiance and Temperature Dependence of Photovoltaic Modules in PVsyst. Photovoltaics.,” Photovoltaics. IEEE Journal; 5(1), pp.152–158. |
5 | [5] Yang.Tingting, “A numerical and experimental investigation of enhanced open - loop airbased Building - Integrated Photovoltaic / Thermal systems,” Build. Civ. Environ. Eng. Present., 2015. |
6 | [6] F. Spertino, J. Ahmad, A. Ciocia, and P. Di Leo, “Techniques and Experimental Results for Performance Analysis of Photovoltaic Modules Installed in Buildings,” Energy Procedia, vol. 111, no. September 2016, pp. 944–953, 2017, doi: 10.1016/j.egypro.2017.03.257. |
7 | [7] L. Zhu, Q. Li, M. Chen, K. Cao, and Y. Sun, “A simplified mathematical model for power output predicting of Building Integrated Photovoltaic under partial shading conditions,” Energy Convers. Manag., vol. 180, no. November 2018, pp. 831–843, 2019, doi: 10.1016/j.enconman.2018.11.036. |
8 | [8] Akinyele D. Belikov J. Levron Y., “Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems.,” doi: https://doi.org/10.3390/en10111760 |
9 | [9] A.G. Komilov. Yu.Z. Nasrullaev., “Influence of the Ambient on the Parameters of a Photovoltaic and Photovoltaic-thermal Converter Based on CIGS in Real Conditions,” Appl. Sol. Energy, vol. 57, no. 1, pp. 16–22, 2021. |
10 | [10] A. H. Fanney, B. P. Dougherty, and M. W. Davis, “Performance and characterization of building integrated photovoltaic panels,” Conf. Rec. IEEE Photovolt. Spec. Conf., no. December, pp. 1493–1496, 2002, doi: 10.1109/pvsc.2002.1190893. |