58

Maqolada Buxoro viloyatining markazlashgan elektr ta’minotidan uzoqda
joylashgan aholi punktlarini uzluksiz va ishonchli elektr energiya bilan ta’minlashda ekologik toza
shamol energetik qurilmalaridan foydalanish imkoniyatlari tadqiqotining ilmiy asoslari keltirilgan.
Mintaqaning turli balandlikda shamol energiyasi resurslar salohiyatini baholashda ikki parametrli
Veybull ehtimollik taqsimot funksiyasidan foydalanilgan. 10 m balandlikdagi shamol o‘rtacha
tezligi 3,5 m/s dan 4,5 m/s oraliqda o‘zgarishi, solishtirma shamol quvvati 50-60 W/m2 va
solishtirma shamol energiyasi yiliga 500 kWh/m2 ga, 80 m balandlikdagi shamol oqimining texnik
salohiyati 3,5 mlrd. kWh tengliga aniqlangan. Bundan tashqari Buxoro viloyatining iqlim
sharoitlariga moslashtirilgan yangi turdagi vertikal o‘qli shamol energetik qurilmasi ishlab
chiqilgan va parametrlari ilmiy asoslangan. Shamol energetik qurilmasining barqaror ishlashini
ta’minlashda tashqi yo‘naltiruvchi sirtlardan foydalanish uslubiyoti keltirilgan. Tashqi
yo‘naltiruvchi sirtlarni qo‘llanilishi hisobiga shamol oqimini sezilarli darazada oshirish imkoniyati
yaratilgan. Shamol energetik qurilmasining kuchsiz shamol oqimlarida samarali ishlashini
ta’minlashda ko‘p qutbli stator va rotori bir-biriga nisbatan teskari aylanadigan
takomillashtirilgan aksial generator ishlab chiqilgan. Elektr generatorni qo‘llanilishi hisobiga
kuchsiz shamol oqimlarida elektr energiya ishlab chiqishni 20% ga oshirishga erishilgan. Ishlab
chiqilgan 600 W quvvatli shamol energetik qurilmasi joriy etilishi hisobiga yiliga, taxminan 1200
kWh elektr energiya, 0,993 t.sh.yo tejalishi va 2 tonnadan ziyodroq karbonat angidrid (CO2) gazi
atmosferaga chiqarilib yuborilishi oldi olingani asoslangan. Tadqiqotning natijalariga asosan
chekka hududlarda yashovchi kichik quvvatli iste’molchilarni ushbu shamol energetik qurilmaridan
foydalanishni kengaytirishda iqtisodiy va ijtimoiy sohalarni rivojlantirishimiz mumkin.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI 15-09-2024
  • Количество прочтений 58
  • Дата публикации 31-03-2023
  • Язык статьиO'zbek
  • Страницы23-37
Ўзбек

Maqolada Buxoro viloyatining markazlashgan elektr ta’minotidan uzoqda
joylashgan aholi punktlarini uzluksiz va ishonchli elektr energiya bilan ta’minlashda ekologik toza
shamol energetik qurilmalaridan foydalanish imkoniyatlari tadqiqotining ilmiy asoslari keltirilgan.
Mintaqaning turli balandlikda shamol energiyasi resurslar salohiyatini baholashda ikki parametrli
Veybull ehtimollik taqsimot funksiyasidan foydalanilgan. 10 m balandlikdagi shamol o‘rtacha
tezligi 3,5 m/s dan 4,5 m/s oraliqda o‘zgarishi, solishtirma shamol quvvati 50-60 W/m2 va
solishtirma shamol energiyasi yiliga 500 kWh/m2 ga, 80 m balandlikdagi shamol oqimining texnik
salohiyati 3,5 mlrd. kWh tengliga aniqlangan. Bundan tashqari Buxoro viloyatining iqlim
sharoitlariga moslashtirilgan yangi turdagi vertikal o‘qli shamol energetik qurilmasi ishlab
chiqilgan va parametrlari ilmiy asoslangan. Shamol energetik qurilmasining barqaror ishlashini
ta’minlashda tashqi yo‘naltiruvchi sirtlardan foydalanish uslubiyoti keltirilgan. Tashqi
yo‘naltiruvchi sirtlarni qo‘llanilishi hisobiga shamol oqimini sezilarli darazada oshirish imkoniyati
yaratilgan. Shamol energetik qurilmasining kuchsiz shamol oqimlarida samarali ishlashini
ta’minlashda ko‘p qutbli stator va rotori bir-biriga nisbatan teskari aylanadigan
takomillashtirilgan aksial generator ishlab chiqilgan. Elektr generatorni qo‘llanilishi hisobiga
kuchsiz shamol oqimlarida elektr energiya ishlab chiqishni 20% ga oshirishga erishilgan. Ishlab
chiqilgan 600 W quvvatli shamol energetik qurilmasi joriy etilishi hisobiga yiliga, taxminan 1200
kWh elektr energiya, 0,993 t.sh.yo tejalishi va 2 tonnadan ziyodroq karbonat angidrid (CO2) gazi
atmosferaga chiqarilib yuborilishi oldi olingani asoslangan. Tadqiqotning natijalariga asosan
chekka hududlarda yashovchi kichik quvvatli iste’molchilarni ushbu shamol energetik qurilmaridan
foydalanishni kengaytirishda iqtisodiy va ijtimoiy sohalarni rivojlantirishimiz mumkin.

Имя автора Должность Наименование организации
1 Uzoqov G.N. t.f.d., prof. QarMII
2 Safarov A.B. t.f.f.d., dotsent BuxMTI
3 O'lmasov Q.N. o'qituvchi BuxMTI
Название ссылки
1 https://ec.europa.eu/clima/policies/strategies/2030_en
2 N.N. Sadullayev., A.B. Safarov., Sh.N. Nematov., R.A. Mamedov., Statistical Analysis of Wind Energy Potential in Uzbekistan’s Bukhara Region Using Weibull Distribution. Applied Solar Energy, 2019. Volume 55, Issue 2, pp. 126–132
3 A.K. Azad., M.G. Rasul., R. Islam., I.R. Shishir. Analysis of Wind Energy Prospect for Power Generation by Three Weibull Distribution Methods. Energy Procedia,Volume 75, August 2015, Pages 722-727
4 N.N. Sadullaev., A.B. Safarov., Sh.N. Nematov. Analysis of Wind Energy Potential in Using Weibull Distribution in Bukhara Region, Uzbekistan. IJARSET. Vol.6, issue.1, 2019.pp.7846-7853
5 A. Allouhi., O. Zamzoum., M.R Islam., T. Kousksou., A. Jamil., A. Derouich. Evaluation of wind energy potential in Morocco‘s coastal regions. Renewable and Sustainable Energy Reviews. 72 (2017). pp.311-324
6 S.A. Ahmed., H.O. Mahammed. A Statistical Analysis of Wind Power Density Based on the Weibull and Ralyeigh models of “Penjwen Region” Sulaimani/Iraq. JJMIE. Volume. 6. Number 2. 2012. pp. 135-140
7 C. Ozay., M.S Celiktas. Statistical analysis of wind speed using two-parameter Weibull distribution in Alacati region. Energy Conversion and Management. 121(2016). pp. 49-54
8 M. Rasham. Analysis of Wind Speed Data and Annual Energy Potential at Three locations in Iraq. International Journal of Computer Applications. 137 (2016) 11-16
9 M. Soulouknga., S. Doka., N. Revanna., N. Djongyang., T. Kofane. Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable energy. 121 (2018). pp.1-8
10 A.Y. Hatata., M.G. Mousa., R.M. Elmahdy. Analysis of wind data and assessing wind energy potentiality for selected locations in Egypt. International Journal of Scientific Engineering Research. Volume 6. Issue 3.2015. pp. 604-609
11 N.N. Sadullayev A.B. Safarov., Sh.N. Nematov., R.A. Mamedov. Research on Facilities of Power Supply of Small Power Capability Consumers of Bukhara Region by using Wind and Solar Energy. International Journal of Innovative Technology and Exploring Engineering, Volume 8, Issue 9S2, 2019. pp. 229 – 235
12 N.N. Sadullayev., A.B. Safarov., R.A. Mamedov., D. Qodirov. Assessment of wind and hydropower potential of Bukhara region // IOP Con. Series: Earth and Environmental Science 614(2020) 012036 (DOI: 10.1088/1755-1315/614/1/012036)
13 M. Shoaib., I. Siddiqui., Y.M Amir., S.U Rehman. Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function. Renewable and Sustainable Energy Reviews. 70(2017) 1343-1351
14 N.N. Sadullayev., A.B. Safarov., Sh.N. Nematov., R.A. Mamedov., A.B. Abdujabarov. Opportunities and Prospects for the Using Renewable Energy Sources in Bukhara Region. Applied Solar Energy.2020. Volume 56, Issue 4, pp. 291–301
15 J. Cataldo., M. Zeballos. Roughness terrain consideration in a wind interpolation numerical model. 11th Americas Conference on Wind Engineering San Juan, Puerto Rico. 2009.
16 B.F. Ragnarsson. Wind energy potential assessment costal analysis of a wind power generation system at Burfell. Dissertation, 2014.pp.132
17 L.N. Ongaki., Ch.M. Maghanga., J. Kerongo. Evaluation of the Technical Wind Energy Potential of Kisii Region Based on the Weibull and Rayleigh Distribution Models. 2018. DOI: 10.20944/preprints201810.0256.v1
18 P. Vais. “Two and three-parametr Weibull distribution in available wind power analysis”. Renewable Energy. 103 (2017) 15-29.
19 D. Hui Ko, Sh. Taek Jeong, Y. Chil Kim. “Assesment of wind energy for small-scale wind power in Chuuk State, Micronesia”. Renewable and Sustainable Energy Reviews. 52 (2015) 613-622.
20 J. Touafio, S. Melenguiza, S. Oumarou, M. Kazet, R. Mouangue. “Statistical analysis and elaboration of the wind potential map of the city of Bangui (Central African Republic)”. Renewable Energy Focus. 29 (2019) 1-13.
21 P.P. Bezrukix., P.P. Bezrukix (ml.)., S.V. Gripkov. Vetroenergetika: Spravochnometodicheskoe izdanie // Pod obщey redaksiey P.P Bezrukix.-M.: «Intexenergo-Izdat», «Teploenergetika», 2014. -304 s.
22 M.G. Bronstein. Harnessing rivers of wind: a technology and policy assessment of high altitude wind power in the U.S // Technological Forecasting and Social Change. 2011.Vol. 78, pp.736-746.
23 S.R. Shah., R. Kumar., K. Raahemifar., A.S. Fung. Design, modeling and economic performance of a vertical axis wind turbine. Energy Reports, 4(2018) 619-623
24 Ahrens, U., Diehl, M., Schmehl, R. (eds.): Airborne wind energy. Springer, Berlin (2013). ISBN 978-3642399640
25 R.D. Blevins. Applied Fluid Dynamic Handbook. Krieger, Florida (2003). pp.180
26 P.M. Kumar., K. Sivalingam., T.Ch Lim., S. Ramakrishna., H. Wei. Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean technologies. 2019(1).pp.205-223
27 T. Ackermann., L. Söder. Wind energy technology and current status: a review. Renewable and Sustainable Energy Reviews. Volume 4, Issue 4, December 2000, Pages 315-324
28 T. Komass., A. Sniders. Design and verification of vertical axis wind turbine simulation model. Engineering for rural development. 2014. Pp.335-340
29 K.C. Latoufis., G.M. Messinis., P.C. Kotsampopoulos., N.D. Hatziargyriou. Axial Flux Permanent Magnet Generator Design for Low Cost Manufacturing of Small Wind Turbines. Wind engineering. Volume 36, No.4, 2012. Pp 411-442
30 J.H. Kim., B. Sarlioglu. Preliminary design of axial flux permanent magnet machine for marine current turbine, in Proceedings of the 2013 IEEE IECON, pp. 3066-3071, November 2013.
31 J.F. Gieras, R.J. Wang, M.J. Kamper, Axial flux permanent magnet brushless machines. Springer Science, Business Media (2004). Rr. 345
32 Wang W., Weijun Wang., Mi H., Mao L., Zhang G., Hua Liu., Wen Y. Study and Optimal Design of a Direct-Driven Stator Coreless Axial Flux Permanent Magnet Synchronous Generator with Improved Dynamic Performance. Energies, 2018, 11(11):3162
В ожидании