5

Ushbu maqolada chastota ta’siri tahlili usuli yordamida kuch transformatorlarini diagnostikalashdan olingan o‘lchov natijalarini sharhlash usullari tahlil qilingan. Olingan natijalarni sharhlashda sonli ko‘rsatkichlar, ularning mohiyati ochib berilgan va qanday shikastlanishlarda qaysi sonli ko‘rsatkichlarni qo‘llab sharhlash yuqori natija berishi keltirib o‘tilgan. Ma’lumotlarni to‘plashda Google akademiya, eLIBRARY, ProQuest, ELSEVER, IEEE Xlopre, ResearchGate va boshqa qidiruv tizimlarining manbalaridagi so‘nggi 20 yilda nashr etilgan chastota ta’siri tahlili usuli hamda sonli ko‘rsatkichlarga aloqador bo‘lgan eksperimental va tahliliy maqolalardan foydalanilgan. Ekspluatatsiyadagi kuch transformatorlaridan chastota ta’siri tahlili usuli yordamida olingan o‘lchov natijalarini sharhlashda grafik qurish va sonli ko‘rsatkichlarni qo‘llash masalalari ko‘rib chiqilgan. Chastota ta’siri tahlili usulida sinovlar olib borish uchun qo‘llaniladigan standart ulanish sxemalari orasida radial deformatsiya, o‘ramlar tutashuvi va o‘zak yerlashishi yo‘qolishiga nisbatan boshidan oxirigacha ochiq zanjir sxemasi samarali bo‘lsa, o‘qiy deformatsiya, o‘tkazgichning qiyshayishi va o‘qiy disk burilishi shikastlanishlarini aniqlashda chulg‘amlararo sig‘im sxemasi aniqlik darajasi yuqori hisoblanadi. Ushbu tadqiqot ishi kelgusi kuch transformatoridagi mexanik shikastlanishlarni aniqlash va diagnostikalash bo‘yicha olib boriladigan ilmiy tadqiqotlar uchun foydali manba bo‘ladi.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI 30-10-2024
  • Количество прочтений 5
  • Дата публикации 28-06-2024
  • Язык статьиO'zbek
  • Страницы45-56
Ўзбек

Ushbu maqolada chastota ta’siri tahlili usuli yordamida kuch transformatorlarini diagnostikalashdan olingan o‘lchov natijalarini sharhlash usullari tahlil qilingan. Olingan natijalarni sharhlashda sonli ko‘rsatkichlar, ularning mohiyati ochib berilgan va qanday shikastlanishlarda qaysi sonli ko‘rsatkichlarni qo‘llab sharhlash yuqori natija berishi keltirib o‘tilgan. Ma’lumotlarni to‘plashda Google akademiya, eLIBRARY, ProQuest, ELSEVER, IEEE Xlopre, ResearchGate va boshqa qidiruv tizimlarining manbalaridagi so‘nggi 20 yilda nashr etilgan chastota ta’siri tahlili usuli hamda sonli ko‘rsatkichlarga aloqador bo‘lgan eksperimental va tahliliy maqolalardan foydalanilgan. Ekspluatatsiyadagi kuch transformatorlaridan chastota ta’siri tahlili usuli yordamida olingan o‘lchov natijalarini sharhlashda grafik qurish va sonli ko‘rsatkichlarni qo‘llash masalalari ko‘rib chiqilgan. Chastota ta’siri tahlili usulida sinovlar olib borish uchun qo‘llaniladigan standart ulanish sxemalari orasida radial deformatsiya, o‘ramlar tutashuvi va o‘zak yerlashishi yo‘qolishiga nisbatan boshidan oxirigacha ochiq zanjir sxemasi samarali bo‘lsa, o‘qiy deformatsiya, o‘tkazgichning qiyshayishi va o‘qiy disk burilishi shikastlanishlarini aniqlashda chulg‘amlararo sig‘im sxemasi aniqlik darajasi yuqori hisoblanadi. Ushbu tadqiqot ishi kelgusi kuch transformatoridagi mexanik shikastlanishlarni aniqlash va diagnostikalash bo‘yicha olib boriladigan ilmiy tadqiqotlar uchun foydali manba bo‘ladi.

Русский

В данной статье анализируются методы интерпретации результатов измерений, полученных в результате диагностики силовых трансформаторов методом амплитудно-частной характеристики. В интерпретации полученных результатов раскрываются числовые показатели, их сущность и указывается, какие числовые показатели дают более высокий результат при каких деформациях. Для сбора данных использовались экспериментально-аналитические данные и статьи Google академии, eLIBRARY, ProQuest, ELSEVER, IEEE Xlopre, ResearchGate и других научных баз, опубликованные за последние 20 лет и касающиеся исследования метода анализа частотных характеристик. При интерпретации результатов измерений, полученных на работающих силовых трансформаторах, методом анализа частотных характеристик эффекта построены графики и рассмотрены вопросы использования числовых показателей. В то время как стандартные схемы подключения, используемые для испытаний методом анализа частотных характеристик, включают схему разомкнутой цепи от начала до конца в отношении радиальной деформации, замыкания обмоток и потерь на позиционирование сердечника, схема межосевой ёмкости имеет высокий уровень точности при обнаружении повреждений осевой деформации, искривления проводника и искривления осевого диска. Эта исследовательская работа станет полезным ресурсом для будущих научных исследований по выявлению и диагностике механических повреждений силового трансформатора.

English

This article analyzes the methods of interpretation of measurement results obtained as a result of diagnostics of power transformers by the method of amplitude-frequency response. The interpretation of the obtained results reveals numerical indices, their essence and indicates which numerical indices give a higher result at which deformations. Experimental and analytical data and articles from Google Academic, eLIBRARY, ProQuest, ELSEVER, IEEE Xlopre, ResearchGate and other scientific bases published in the last 20 years and related to the study of the frequency response analysis method were used for data collection. In interpreting measurement results obtained on operating power transformers, the frequency response analysis method of effect is plotted and the use of numerical indicators is discussed. While standard wiring schemes used for frequency response analysis method tests include an open circuit scheme from start to finish with respect to radial strain, winding shorting, and core positioning losses, the inter-axial capacitance scheme has a high level of accuracy in detecting axial strain damage, conductor warpage, and axial disk warpage. This research work will be a useful resource for future research work on detection and diagnosis of mechanical damage in power transformer.

Имя автора Должность Наименование организации
1 Toychiyev Z.Z. texnika fanlari bo‘yicha falsafa doktori (PhD) Islom Karimov nomidagi Toshkent davlat texnika universiteti Qo‘qon filiali
2 Abdullayev A.A. tayanch doktorant Farg‘ona politexnika instituti
Название ссылки
1 Al-Ameri, S. M. A. N. et al. (2021a). Understanding the Influence of Power Transformer Faults on the Frequency Response Signature Using Simulation Analysis and Statistical Indicators. In IEEE Access, 9, 70935–70947. https://doi.org/10.1109/ACCESS.2021.3076984
2 Al-Ameri, S., Kamarudin, M. S., Mohd Fairouz, M. Y., Salem, A. A., & Mosaad, M. I. (2021b). Interpretation of frequency response analysis for fault detection in power transformers. Applied Sciences, 11 (7), 2923. https://doi.org/10.3390/app11072923
3 Alsuhaibani, S. et al. (2016). A review of frequency response analysis methods for power transformer diagnostics. Energies, 9 (11), 879.
4 Bacha, K., Souahlia, S., & Gossa, M. (2012). Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric Power Systems Research, 83 (1), 73–79.
5 Banaszak, S., & Szoka, W. (2018). Cross Test Comparison in Transformer Windings Frequency Response Analysis. Energies, 11 (6), 1349. https://doi.org/10.3390/en11061349
6 Behjat, V., & Mahvi, M. (2015). Statistical approach for interpretation of power transformers frequency response analysis results. The Institution of Engineering and Technology Science, Measurement & Technology, 9 (3), 367–375. https://doi.org/10.1049/iet-smt.2014.0097
7 Brandt, M., & Kaščák, S. (2016). Failure identification of induction motor using SFRA method. 2016 ELEKTRO, 269–272. Strbske Pleso, Slovakia. https://doi.org/10.1109/ELEKTRO.2016.7512079
8 Cheng, B. (2017). Interpretation of FRA Response in the Frequency Region Dominated by Winding Structure. PhD thesis. The University of Manchester, United Kingdom.
9 DL/T 911-2004 - Frequency response analysis on winding deformation of power transformers. (2004). Transl. English of Chinese Standard National Development and Reform Commission of the People’s Republic of China. China.
10 Ghoneim, S. S. M., & Taha, I. B. M. (2016). A new approach of DGA interpretation technique for transformer fault diagnosis. International Journal of Electrical Power & Energy Systems, 81, 265–274.
11 Hussain, M. R., Refaat, S. S., & Abu-Rub, H. (2021). Overview and partial discharge analysis of power transformers: A literature review. IEEE Access, 9, 64587–64605.
12 IEC60076-18 - International Electrotechnical Commission. (2012, March). Measurement of Frequency Response, 10th ed. IEC Std. Geneva, Switzerland.
13 IEEE Guide for the Application and Interpretation of Frequency Response Analysis for OilImmersed Transformers. (2013, March). In IEEE Std C57.149-2012, 1-72. https://doi.org/10.1109/ IEEESTD.2013.6475950
14 Ismoilov, I. K. (2022). Analysis of the Problem of Complex Technical Diagnostics of Power Transformers in Power Systems. Eurasian Journal of Engineering and Technology, 13, 25–30.
15 Jia, R. et al. (2016). Power transformer partial discharge fault diagnosis based on multidimensional feature region. Mathematical Problems in Engineering.
16 Kodirov, K. M., & Yuldashev, S. N. (2023). Analysis of oil power transformer resources through vibrodiagnostics. Educational Research in Universal Sciences, 2 (15s), 707–710. http://erus.uz/index. php/er/article/view/4871
17 Mao, X. (2019). Transfer function estimation and AI application for transformer FRA interpretation. PQDT - Global, 228. The University of Manchester, United Kingdom.
18 Miyazaki, S. (2022). Detection of winding axial displacement of a real transformer by frequency response analysis without fingerprint data. Energies, 15 (1), 200. https://doi.org/10.3390/ en15010200
19 Muhammadjonov, M. Sh. (2023). Kuch transformatorlarining turlari va sovutish tizimlari tahlili [Analysis of types of power transformers and cooling systems]. (In Uzbek). Scientific and Technical Journal of Fergana Polytechnic Institute, 27 (1), 210–213.
20 Ni, J., Zhao, Zh., Tan, Sh., Chen, Y., Yao, Ch., & Tang, Ch. (2020). The actual measurement and analysis of transformer winding deformation fault degrees by FRA using mathematical indicators. Electric Power Systems Research, 184, 106324. https://doi.org/10.1016/j.epsr.2020.106324
21 Picher, P., Tenbohlen, S., Lachman, M., Scardazzi, A., & Patel, P. (2017). Current state of transformer FRA interpretation: On behalf of CIGRE WG A2.53. Transformer Research and Asset Management: Proccedings of the 4th International Colloquium. United States. https://doi. org/10.1016/j.proeng.2017.09.689
22 Rossa, R. H., Januario, M., & Hoffmann, K. (2016, July). Interface Applied to Frequency Response Analysis of Power Transformers. Conference: MOMAG, Porto Alegre. 12th CBMag - Brazilian Congress of Electromagnetism, 17th SBMO - Brazilian Symposium on Microwaves and Optoelectronics and LAWOFS 2016. Porto Alegre, Brazil.
23 Saha, T. K., & Purkait, P. (2017). Frequency Response Analysis Interpretation for Winding Deformation of Power Transformers. In Transformer Ageing: Monitoring and Estimation Techniques, IEEE, 303–328. https://doi.org/10.1002/9781119239970.ch6
24 Secue, J. R., & Mombello, E. (2008). Sweep frequency response analysis (SFRA) for the assessment of winding displacements and deformation in power transformers. Electric Power Systems Research, 78 (6), e6, 1119–1128.
25 Senobari, R. K., Sadeh, J., & Borsi H. (2018). Frequency response analysis (FRA) of transformers as a tool for fault detection and location: A review. Electric Power Systems Research, 155, 172–183.
26 Shi, X., Wei, R., & Zhang, W. (2023). Research on Online Detection Method of Transformer Winding Deformation Based on VFTO Characteristics. Energies, 16, 3496. https://doi.org/10.3390/ en16083496
27 Taha, I. B. M., Ibrahim, S., & Mansour, D. E. A. (2021). Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements. IEEE Access, 9, 111162–111170.
28 Tahir, M., & Tenbohlen, S. (2019). A comprehensive analysis of windings electrical and mechanical faults using a high-frequency model. Energies, 13 (1), 105.
29 Tenbohlen, S. (2021). Transformer winding condition assessment using feedforward artificial neural network and frequency response measurements. Energies, 14 (11), 3227. https://doi. org/10.3390/en14113227
30 To‘ychiev, Z.Z. (2023). 10/0,4 kv kuchlanishdagi kuch transformatorlarining ishonchliligini ichki simmetriyalash orqali oshirish [Increasing the reliability of 10/0.4 kV power transformers by internal balancing]. (in Uzbek). PhD thesis. Tashkent.
31 Transformer diagnostics - Facilities instructions, standards, and techniques. (2003, June). Reclamation Report of United States department of the interior bureau, 3, 71.
32 Yusupov, D., et al. (2023). Express diagnostics of power oil transformers by vibroacoustics and partial discharges. E3S Web of Conferences - EDP Sciences, 434, 01027.
33 Zhijian, J., Li, J., & Zishu, Z. (2000). Diagnosis of transformer winding deformation on the basis of artificial neural network. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 00CH36347), 1, 173–176. Xi’an, China. https://doi. org/10.1109/ICPADM.2000.875658
В ожидании