Maqolada dolzarb metrologik muammolardan biri – fizik-kimyoviy kattaliklarni o‘lchash noaniqligi konsepsiyasining ilmiy-nazariy asoslari va amaliy jihatlari tadqiq etilgan. Metrologik ta’minotning muhim vazifasi bo‘lgan B turdagi o‘lchashlarning standart noaniqligini baholashda aprior ma’lumotlarni taqsimlash turini tanlash va aniqlashning gibrid usuli ishlab chiqilgan. Tadqiqotning dolzarbligi cheklangan aprior ma’lumotlar sharoitida noaniqlikni baholashning ishonchliligini oshirish zarurati bilan bog‘liq, chunki mavjud yondashuvlar ko‘pincha noto‘g‘ri natijalarga olib kelishi mumkin bo‘lgan subyektiv ekspert mulohazalariga asoslanadi. Tadqiqotning ilmiy yangiligi quyidagilardan iborat: B tipidagi o‘lchashlarning standart noaniqligini baholashda axborot fondining taqsimlanish turini tanlash uchun gibrid usul va matematik modellar ishlab chiqilgan; taklif etilgan usul maksimal entropiya prinsipi va Bayes nazariyasining kombinatsiyasiga asoslangan. Тadqiqot metodologiyasi mavjud yondashuvlarni
tahlil qilish, taqsimotni tanlashning metrologik mezonlarini rasmiylashtirish va qaror qabul qilish algoritmini ishlab chiqishni o‘z ichiga oladi. Usulning adekvatligi va samaradorligi “O‘zbekiston milliy metrologiya instituti” davlat muassasasining fizik-kimyoviy kattaliklar ilmiy laboratoriyasida, shuningdek, ISO/IEC 17025:2017 xalqaro standartiga muvofiq, akkreditatsiyadan o‘tgan o‘lchash (sinov) laboratoriyalarida sinovdan o‘tkazilgan. Olingan natijalar o‘lchashlar noaniqligini baholash aniqligini oshirish, shuningdek, metrologik nazorat tartib-taomillarini takomillashtirish uchun metrologiya, standartlashtirish va sinovlar sohasida qo‘llanishi mumkin. Tadqiqot natijalari ISO/IEC 17025:2017 xalqaro standarti bo‘yicha faoliyat yurituvchi akkreditatsiyadan o‘tgan metrologik va sinov laboratoriyalarida, ISO 17043:2023 standarti asosida faoliyat yurituvchi laboratoriyalararo taqqoslash provayderlarida, shuningdek, Xalqaro o‘lchov va tarozilar byurosi (BIPM) tomonidan qo‘llab-quvvatlanadigan KCDB ma’lumotlar bazasida taqdim etilgan kalibrlash va o‘lchash imkoniyatlari (CMC) bo‘yicha davlatlararo va xalqaro darajadagi sinov taqqoslashlari doirasida talab qilinadi. Ishlab chiqilgan usul o‘lchashlar noaniqligini baholash bilan shug‘ullanuvchi ilmiy markazlar va laboratoriyalar, shuningdek, metrologiya va sinovlar sohasida faoliyat yurituvchi boshqa tashkilotlarda ham qo‘llanishi mumkin. Uning joriy etilishi noaniqlikni baholashning obyektivligini oshirish, o‘lchash natijalarining kengaytirilgan noaniqligi ishonchliligini yaxshilash va B turdagi o‘lchashlarning standart noaniqligi bilan bog‘liq xatarlarni kamaytirishga yordam beradi.
Maqolada dolzarb metrologik muammolardan biri – fizik-kimyoviy kattaliklarni o‘lchash noaniqligi konsepsiyasining ilmiy-nazariy asoslari va amaliy jihatlari tadqiq etilgan. Metrologik ta’minotning muhim vazifasi bo‘lgan B turdagi o‘lchashlarning standart noaniqligini baholashda aprior ma’lumotlarni taqsimlash turini tanlash va aniqlashning gibrid usuli ishlab chiqilgan. Tadqiqotning dolzarbligi cheklangan aprior ma’lumotlar sharoitida noaniqlikni baholashning ishonchliligini oshirish zarurati bilan bog‘liq, chunki mavjud yondashuvlar ko‘pincha noto‘g‘ri natijalarga olib kelishi mumkin bo‘lgan subyektiv ekspert mulohazalariga asoslanadi. Tadqiqotning ilmiy yangiligi quyidagilardan iborat: B tipidagi o‘lchashlarning standart noaniqligini baholashda axborot fondining taqsimlanish turini tanlash uchun gibrid usul va matematik modellar ishlab chiqilgan; taklif etilgan usul maksimal entropiya prinsipi va Bayes nazariyasining kombinatsiyasiga asoslangan. Тadqiqot metodologiyasi mavjud yondashuvlarni
tahlil qilish, taqsimotni tanlashning metrologik mezonlarini rasmiylashtirish va qaror qabul qilish algoritmini ishlab chiqishni o‘z ichiga oladi. Usulning adekvatligi va samaradorligi “O‘zbekiston milliy metrologiya instituti” davlat muassasasining fizik-kimyoviy kattaliklar ilmiy laboratoriyasida, shuningdek, ISO/IEC 17025:2017 xalqaro standartiga muvofiq, akkreditatsiyadan o‘tgan o‘lchash (sinov) laboratoriyalarida sinovdan o‘tkazilgan. Olingan natijalar o‘lchashlar noaniqligini baholash aniqligini oshirish, shuningdek, metrologik nazorat tartib-taomillarini takomillashtirish uchun metrologiya, standartlashtirish va sinovlar sohasida qo‘llanishi mumkin. Tadqiqot natijalari ISO/IEC 17025:2017 xalqaro standarti bo‘yicha faoliyat yurituvchi akkreditatsiyadan o‘tgan metrologik va sinov laboratoriyalarida, ISO 17043:2023 standarti asosida faoliyat yurituvchi laboratoriyalararo taqqoslash provayderlarida, shuningdek, Xalqaro o‘lchov va tarozilar byurosi (BIPM) tomonidan qo‘llab-quvvatlanadigan KCDB ma’lumotlar bazasida taqdim etilgan kalibrlash va o‘lchash imkoniyatlari (CMC) bo‘yicha davlatlararo va xalqaro darajadagi sinov taqqoslashlari doirasida talab qilinadi. Ishlab chiqilgan usul o‘lchashlar noaniqligini baholash bilan shug‘ullanuvchi ilmiy markazlar va laboratoriyalar, shuningdek, metrologiya va sinovlar sohasida faoliyat yurituvchi boshqa tashkilotlarda ham qo‘llanishi mumkin. Uning joriy etilishi noaniqlikni baholashning obyektivligini oshirish, o‘lchash natijalarining kengaytirilgan noaniqligi ishonchliligini yaxshilash va B turdagi o‘lchashlarning standart noaniqligi bilan bog‘liq xatarlarni kamaytirishga yordam beradi.
В статье исследуются теоретические и практические аспекты одной из актуальных задач метрологии – концепции неопределённости измерений физико-химических величин. Разработан
гибридный метод выбора и определения типа распределения априорной информации при оценке стандартной неопределённости измерений типа B, что является одной из ключевых задач метрологического обеспечения. Актуальность исследования обусловлена необходимостью повышения достоверности оценки неопределённости в условиях ограниченной априорной информации, так как существующие подходы зачастую базируются на субъективных экспертных оценках, что может приводить к неточным результатам. Научная новизна заключается в следующем: предложен гибридный метод и математические модели выбора распределения информационного фонда при оценке стандартной неопределённости измерений типа B; метод основан на сочетании принципа максимальной энтропии и теории Байеса. Методология исследования включает анализ существующих подходов, формализацию метрологических критериев выбора распределения и разработку алгоритма принятия решений. Адекватность и эффективность метода проверены в лаборатории физико-химических величин Государственного учреждения «Национальный институт метрологии Узбекистана», а также в аккредитованных по ISO/IEC 17025:2017 испытательных лабораториях. Полученные результаты могут быть применены в практике оценки неопределённости измерений, совершенствования процедур метрологического контроля, а также в деятельности лабораторий,
аккредитованных по стандартам ISO/IEC 17025:2017 и ISO 17043:2023, и в международных сравнительных испытаниях в рамках базы данных CMC (BIPM-KCDB). Предлагаемый метод может быть использован научными центрами и организациями, занимающимися метрологией и
испытаниями. Его внедрение способствует повышению объективности оценки неопределённости, надёжности расширенной неопределённости результатов и снижению рисков, связанных со стандартной неопределённостью измерений типа B
This article investigates theoretical and practical aspects of one of the urgent metrological issues — the concept of measurement uncertainty for physico-chemical quantities. A hybrid method is developed for selecting and determining the distribution type of a priori information in evaluating type B standard measurement uncertainty, which is a key task in metrological assurance. The relevance of the study lies in the need to improve the reliability of uncertainty assessment under conditions of limited a priori information, as existing approaches often rely on subjective expert judgments, which can lead to inaccurate results. The scientific novelty includes the development of a hybrid method and mathematical models for selecting the distribution of the information base in assessing type B standard uncertainty; the method is based on the combination of the maximum entropy principle and Bayesian theory. The research methodology includes analysis of existing approaches, formalization of metrological criteria for distribution selection, and development of a decision-making algorithm. The adequacy and effectiveness of the method were tested at the Scientific Laboratory of Physico-Chemical Quantities of the “Uzbek National Institute of Metrology” and accredited measurement (testing) laboratories compliant with ISO/IEC 17025:2017. The results can be applied in improving the accuracy of measurement uncertainty assessments and refining metrological control procedures, and are required in ISO/IEC 17025:2017 accredited laboratories, interlaboratory comparison providers under ISO 17043:2023, and international comparisons within the BIPM-KCDB database on calibration and measurement capabilities (CMC). The developed method may be used by scientific centers and laboratories involved in uncertainty evaluation, metrology, and testing. Its implementation will enhance the objectivity of uncertainty evaluation, improve the reliability of expanded uncertainty, and reduce risks associated with type B standard uncertainty.
| № | Имя автора | Должность | Наименование организации |
|---|---|---|---|
| 1 | Masharipov .M. | texnika fanlari bo‘yicha falsafa doktori (PhD) | I. Karimov nomidagi Toshkent davlat texnika universiteti |
| № | Название ссылки |
|---|---|
| 1 | Abduvaliev, A.A. (2015). Improvement of standardization systems, measurement traceability and conformity assessment in the Republic of Uzbekistan under market conditions [Doctoral dissertation]. Tashkent Institute of Irrigation and Melioration. |
| 2 | Akhmedov, B.M. (2009). Scientific foundations and methodology of measurement traceability in quality control of food products [Doctoral dissertation]. Tashkent Institute of Chemical Technology. |
| 3 | Arend, R.J. (2024). Measures of uncertainty (in decision-making). In Uncertainty in Strategic Decision Making. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-48553-4_9 |
| 4 | Avdic, S., Demirovic, D., Hadzimustafic, E., et al. (2024). Distribution of mean time intervals between successive neutron counts for different phenomena and power law forms. The European Physical Journal Plus, 139, 443. https://doi.org/10.1140/epjp/s13360-024-05269-x |
| 5 | Cheng, Y., Chen, X., Li, H., Cheng, Z., Jiang, R., Lü, J., & Fu, H. (2018). Analysis and comparison of Bayesian methods for measurement uncertainty evaluation. Mathematical Problems in Engineering, Article ID 7509046. https://doi.org/10.1155/2018/7509046 |
| 6 | Ferrero, A., & Scotti, V. (2022). Measurement uncertainty. In Forensic Metrology. Springer. https://doi.org/10.1007/978-3-031-14619-0_5 |
| 7 | Ferrero, A., Salicone, S., & Jetti, H. V. (2019). Bayesian approach to uncertainty evaluation: Is it always working? 19th International Congress of Metrology, 16002, 1–14. https://doi.org/10.1051/ metrology/201916002 |
| 8 | Genske, D.D. (2024). Principles of uncertainty. In Engineering Geology. Springer. https://doi. org/10.1007/978-3-662-68762-8_4 |
| 9 | Gupta, H., Rab, S., & Garg, N. (2023). Evaluation and analysis of measurement uncertainty. In D.K. Aswal et al. (Eds.), Handbook of Metrology and Applications. Springer. https://doi.org/10.1007/978-981-19-1550-5_128-1 |
| 10 | Huang, H. (2022). A new modified Bayesian method for measurement uncertainty analysis and the unification of frequentist and Bayesian inference. Journal of Probability and Statistical Science, 20(1), Article 515. https://doi.org/10.37119/jpss2022.v20i1.515 |
| 11 | Huang, H. (2024). A practical two-step procedure for taking into account all available information (prior and current) about influence quantities in measurement uncertainty analysis. Accred Qual Assur, 29, 215–223. https://doi.org/10.1007/s00769-024-01583-0 |
| 12 | ISO/IEC. (2008). Guide 98-3: Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995). International Organization for Standardization. |
| 13 | Jabbarov, R.R. (2019). Improvement of the methodology for ensuring metrological traceability and measurement uncertainty of dynamic shear elasticity and viscosity of liquids [Doctoral dissertation]. Tashkent State Technical University. |
| 14 | Kounbach, S., Laassiri, S., Moutaoukil, Z., et al. (2023). Improvement of the characterization uncertainty of a matrix-certi�ied reference material for accurate measurement of H2SiF6 mass fraction in industrial �luorosilicic acid by using a direct measurement procedure. Analytical Sciences, 39, 1865– 1873. https://doi.org/10.1007/s44211-023-00391-9 |
| 15 | Latipov, V.B. (2012). Methodology for evaluating measurement uncertainty of the composition and properties of substances and materials [Doctoral dissertation]. Tashkent State Technical University. |
| 16 | Levin, S.F. (2020). Inadequacy of mathematical models of measurement objects and calculations of risk based on the use of GOST ISO/IEC 17025–2019. Measurement Techniques, 63, 524– 533. https://doi.org/10.1007/s11018-020-01819-8 |
| 17 | Li, Y.Q., Lin, M., & Xu, L.J. et al. (2024). Monte Carlo method for evaluation of surface emission rate measurement uncertainty. Nuclear Science and Techniques, 35, 118. https://doi.org/10.1007/ s41365-024-01474-6 |
| 18 | Masharipov, Sh.M. (2019). O‘lchashlar noaniqligi kontseptsiyasi va unda qamrab olish koeffitsientini tanlash [The concept of measurement uncertainty and the choice of coverage factor]. Standard: Scientific and Technical Journal, (4), 8–9. |
| 19 | Masharipov, Sh.M., & Fattoyev, F.F. (2020). Scientific-methodological basis improvement of the metrological support in terms of the essential requirements for the measuring and testing uncertainties concept. Technical Science and Innovation, (4), 167–175. |
| 20 | Mendel, J.M. (2024). Sources of uncertainty and membership functions. In Explainable Uncertain Rule-Based Fuzzy Systems. Springer. https://doi.org/10.1007/978-3-031-35378-9_5 |
| 21 | Ramsey, M.H., & Rostron, P.D. (2024). Measurement uncertainty from sampling and its role in validation of measurement procedures. Accred Qual Assur, 29, 153–162. https://doi.org/10.1007/ s00769-024-01575-0 |
| 22 | Singh, S., Kulshrestha, M.J., & Rani, N. (2023). Traceability in analytical environmental measurements. In D.K. Aswal, S. Yadav, T. Takatsuji, P. Rachakonda, & H. Kumar (Eds.), Handbook of Metrology and Applications. Springer. https://doi.org/10.1007/978-981-99-2074-7_94 |
| 23 | Stinnett, J., Santi, P.A., & Swinhoe, M.T. (2024). Basics of uncertainty. In W.H. Geist, P.A. Santi, & M.T. Swinhoe (Eds.), Nondestructive Assay of Nuclear Materials for Safeguards and Security (pp. 693– 708). Springer. https://doi.org/10.1007/978-3-031-58277-6_25 |
| 24 | Toman, B. (2005). Bayesian approach to assessing uncertainty and calculating a reference value in key comparison experiments. Journal of Research of the National Institute of Standards and Technology, 110(6), 605–612. https://doi.org/10.6028/jres.110.085 |
| 25 | Velásquez, C., Juiña, D., Iturra, F., Silva, B., & Barona, D. (2024). Methodology for declaration of conformity under ISO/IEC 17025 associating con�idence levels and risk analysis. In M.Z. Vizuete et al. (Eds.), Innovation and Research – Smart Technologies & Systems (Vol. 1041). Springer. https://doi. org/10.1007/978-3-031-63437-6_3 |
| 26 | Weise, K., & Woger, W. (1993). A Bayesian theory of measurement uncertainty. Measurement Science and Technology, 4(1), 1–11. https://doi.org/10.1088/0957-0233/4/1/001 |
| 27 | Willink, R. (2025). On the role of probability in science, analytical measurement and QUAM. Accred Qual Assur. https://doi.org/10.1007/s00769-025-01631-3 |