Texnik tizimlardagi buzilishlar texnikaning o‘ziga zarar yetkazadi hamda iqtisodiy yo‘qotishlarga olib keladi. Ishonchlilik barcha avtomatlashtirilgan boshqarish tizimlarining asosiy muammosidir. Mahsulot ishonchliligiga texnologik omillarning ta’sirini o‘rganish va ularni bartaraf etish muhim masalalardan
hisoblanadi. Har qanday yangi qurilmani loyihalashda uning ishonchliligini baholash ushbu qurilma xarajatlarining o‘zini oqlash-oqlamasligini aniqlovchi muhim ko‘rsatkichdir. Ushbu maqola tut ipak qurti pillalariga dastlabki ishlov beruvchi quyosh qurilmasining ishonchliligini baholash orqali amaliy muammoni hal qilishga qaratilgan. Qurilma ipakchilik sohasida muhim o‘rin tutadi va uning ishonchliligi bevosita iqtisodiy samaradorlikka ta’sir ko‘rsatadi Ishonchlilikni baholashda eksponensial qonun va matematik modellashtirish usullaridan foydalanilgan. Qurilma elementlarining ishdan chiqish intensivligini hisoblashda turli koeffitsiyentlar e’tiborga olingan bo‘lib, bu hisob-kitoblarni real sharoitlarga yaqinlashtiradi. Issiqlik va elektr yuklamasi kabi omillar qurilma ishonchliligiga ta’sir qiluvchi asosiy ko‘rsatkichlar sifatida aniqlangan. Tadqiqot natijalari qurilma dizaynini yaxshilash uchun yuqori sifatli issiqlikdan izolyatsiyalovchi materiallardan foydalanish, quyosh panellarining chidamliligini oshirish va avtomatik harorat-namlik nazorati tizimlarini joriy etish kabi aniq tavsiyalar beradi.
Texnik tizimlardagi buzilishlar texnikaning o‘ziga zarar yetkazadi hamda iqtisodiy yo‘qotishlarga olib keladi. Ishonchlilik barcha avtomatlashtirilgan boshqarish tizimlarining asosiy muammosidir. Mahsulot ishonchliligiga texnologik omillarning ta’sirini o‘rganish va ularni bartaraf etish muhim masalalardan
hisoblanadi. Har qanday yangi qurilmani loyihalashda uning ishonchliligini baholash ushbu qurilma xarajatlarining o‘zini oqlash-oqlamasligini aniqlovchi muhim ko‘rsatkichdir. Ushbu maqola tut ipak qurti pillalariga dastlabki ishlov beruvchi quyosh qurilmasining ishonchliligini baholash orqali amaliy muammoni hal qilishga qaratilgan. Qurilma ipakchilik sohasida muhim o‘rin tutadi va uning ishonchliligi bevosita iqtisodiy samaradorlikka ta’sir ko‘rsatadi Ishonchlilikni baholashda eksponensial qonun va matematik modellashtirish usullaridan foydalanilgan. Qurilma elementlarining ishdan chiqish intensivligini hisoblashda turli koeffitsiyentlar e’tiborga olingan bo‘lib, bu hisob-kitoblarni real sharoitlarga yaqinlashtiradi. Issiqlik va elektr yuklamasi kabi omillar qurilma ishonchliligiga ta’sir qiluvchi asosiy ko‘rsatkichlar sifatida aniqlangan. Tadqiqot natijalari qurilma dizaynini yaxshilash uchun yuqori sifatli issiqlikdan izolyatsiyalovchi materiallardan foydalanish, quyosh panellarining chidamliligini oshirish va avtomatik harorat-namlik nazorati tizimlarini joriy etish kabi aniq tavsiyalar beradi.
Отказы в технических системах наносят ущерб оборудованию и приводят к экономическим потерям. Надёжность является одной из ключевых проблем всех автоматизированных систем управления. Изучение влияния технологических факторов на надёжность продукции и их устранение – важная задача. При проектировании любого нового устройства оценка его надёжности служит важнейшим показателем, определяющим, окупятся ли затраты на его разработку. В данной статье рассматривается решение практической задачи – оценка надёжности солнечной установки для первичной обработки коконов тутового шелкопряда. Устройство имеет большое значение в шелководческой отрасли, и его надёжность напрямую влияет на экономическую эффективность. Для оценки надёжности использованы экспоненциальный закон распределения и методы математического моделирования. При расчёте интенсивности отказов элементов устройства учитывались различные коэффициенты, приближающие расчёты к реальным условиям. Тепловые и электрические нагрузки определены как основные факторы, влияющие на надёжность устройства. Результаты исследования позволили сформулировать конкретные рекомендации по совершенствованию конструкции: использование качественных теплоизоляционных материалов, повышение устойчивости солнечных панелей и внедрение автоматических систем контроля температуры и влажности.
Failures in technical systems lead to damage to equipment and economic
losses. Reliability is one of the main concerns in all automated control systems.
Studying the impact of technological factors on product reliability and eliminating
them is a critical task. When designing any new device, evaluating its reliability is
a crucial indicator in determining whether the associated costs are justified. This
article focuses on solving a practical issue by evaluating the reliability of a solar-
powered device for the primary processing of silkworm cocoons. The device plays
an important role in the sericulture industry, and its reliability directly affects
economic efficiency. The study uses exponential distribution laws and mathematical
modeling methods to assess reliability. Various coefficients were considered in
calculating the failure intensity of the device’s components, bringing the results
closer to real-life conditions. Factors such as thermal and electrical loads were
identified as primary indicators affecting device reliability. The research results led
to specific recommendations for improving device design, including the use of high-
quality thermal insulation materials, enhancing the durability of solar panels, and
implementing automatic temperature and humidity control systems.
| № | Имя автора | Должность | Наименование организации |
|---|---|---|---|
| 1 | Mirsaatov R.M. | texnika fanlari doktori, professor | Toshkent davlat transport universiteti |
| 2 | Xudoyberganov S.B. | texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent v. b. | Toshkent davlat transport universiteti |
| 3 | Sultanxodjaeva G.S. | katta o‘qituvchi | Toshkent davlat transport universiteti |
| № | Название ссылки |
|---|---|
| 1 | Alimova, Kh., Gulamov, A., Avazov, K., Umurzakova, Kh., & Eshmirzaev, A. (2020, January). New device and technology for primary processing of silkworm cocoons obtained during different feeding seasons. International Journal of Recent Technology and Engineering, 8(5), 1–6. https://www.ijrte.org/ wp-content/uploads/papers/v8i5/E7043018520.pdf |
| 2 | Andrews, J., Reeves, J., Remenyte-Prescott, R., & Andrews, J. (2018). Sensor selection for fault diagnostics using performance metric. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 233(4), 537–552. https://doi.org/10.1177/1748006X18804690 |
| 3 | Avrutov, V. V., & Burau, N. I. (2014). Reliability and diagnostics of devices and systems. Kyiv: NTUU «KPI». [In Russian] |
| 4 | Borovikov, S. M., Tsyrelchuk, I. N., & Troyan, F. D. (2010). Calculation of reliability indicators of radioelectronic equipment: Textbook and methodical guide. Minsk: BSUIR. [In Russian] |
| 5 | Burkhanov, S. D., Mirsaatov, R. M., Khudoyberganov, S. B., & Kadyrov, B. H. (2021). Relationship of parameters that characterize the quality of live cocoons. IOP Conference Series: Earth and Environmental Science, 677(4), 042032. |
| 6 | Castaño, F., Strzelczak, S., Villalonga, A., Haber, R. E., & Kossakowska, J. (2019). Sensor reliability in cyber-physical systems using Internet-of-Things data: A review and case study. Remote Sensing, 11(19), 2252. https://doi.org/10.3390/rs11192252 |
| 7 | Feng, C., Liang, X., Schneegass, D., & Tian, P. (2020). RelSen: An optimization-based framework for simultaneously sensor reliability monitoring and data cleaning. arXiv. https://arxiv.org/ abs/2004.08762 |
| 8 | Kalavin, V. P., & Rybakov, L. M. (2009). Reliability and diagnostics of electrical installation components. Saint Petersburg: Emor Publ. [In Russian] https://f.eruditor.link/file/663494/ |
| 9 | Khashemin, Kh. M. (2008). Sensors of technological processes: Characteristics and methods for improving reliability. Moscow: Binom. [In Russian] https://teor-meh.ru/books/radioelektronika/ datchiki_tehnologicheskih_p.html |
| 10 | Liu, H. (2025). Enhancing machinery reliability: The role of piezoelectric sensors in early detection of failures and wear in rotating equipment and turbines. Applied and Computational Engineering, 123, 66–71. https://www.ewadirect.com/proceedings/ace/article/view/19576 |
| 11 | Mirsaatov, R. M., & Sultankhodzhaeva, G. Sh. (2024). Primary processing of mulberry silkworm cocoons using solar energy. Agro Ilm - Agrarian Science, 6(104). |
| 12 | Mirsaatov, R. M., & Sultankhodzhaeva, G. Sh. (2025). Device for steaming silkworm cocoons. Patent No. IAP 7903. Intellectual Property Center under the Ministry of Justice of the Republic of Uzbekistan. |
| 13 | Mirsaatov, R. M., & Sultankhojaeva, G. Sh. (2024, May). Development of technology for drying and complete drying of silkworm cocoons. Proceedings of International Conference on Modern Science and Scientific Studies, 3(5), 188–193. https://econferenceseries.com/index.php/icmsss/article/ view/4754 |
| 14 | Mirsaatov, R., & Abdullaev, J. (2023, May). Modeling of the initial processing processes of mulberry silkworm colons. Galaxy International Interdisciplinary Research Journal. https://www.giirj. com/index.php/giirj/article/view/5350 |
| 15 | Pirliev, K., Allaberenov, R., & Charyeva, S. (2024). The use of sensors to improve accuracy and reliability in automation. Bulletin of Science - Vestnik Nauki, 3(11), 965–968. https://www.вестник- науки.рф/article/18816 |
| 16 | Rubinov, Z. B., Mukhamedov, M. M., Osipova, L. Kh., & Burnashev, I. Z. (2006). Silk raw materials and cocoon reeling. Moscow: Legprombytizdat. [In Russian] |
| 17 | Safarov, J., Sultanova, Sh., Dadaev, G., Zulpanov, Sh., & Erkinov, D. (2018). Research of technique and technology for processing cocoons silkworm. Agricultural Research & Technology: Open Access Journal, 15(4), 1–3. https://doi.org/10.19080/ARTOAJ.2018.15.555960 |
| 18 | Salimdzhanov, S., Kurbanov, F. S., Safarov, F. M., & Badalov, A. B. (2014). Main influencing factors and thermodynamic analysis of the swelling process of cocoon shells. Bulletin of the Tajik Technical University - Vestnik Tadzhikskogo Tekhnicheskogo Universiteta, (3), 36–39. |
| 19 | Toosi, T., Sirola, M., Laukkanen, J., van Heeswijk, M., & Karhunen, J. (2019). Method for detecting aging related failures of process sensors via noise signal measurement. International Journal of Computing, 18(2), 135–146. https://computingonline.net/computing/article/view/1412 |
| 20 | Yuldashev, Sh., Umarov, S., & Avezov, R. R. (2000). Temperature and humidity regimes of a solar plant for silkworm cocoon destruction. Geliotekhnika - Heliotechnics, (4), 35–39. |