24

This paper examines the main technologies and mechanisms used in the curing
process of multilayer thick-walled parts of unmanned aerial vehicles (UAVs) made of polymer
composite materials (PCM) based on epoxy resin. The study provides a detailed analysis of the
technological features of the curing process, its kinetics, and the influence of heat transfer
mechanisms on the final quality of molded components. It is emphasized that due to the low thermal
conductivity of PCM, temperature inhomogeneity may occur during curing, leading to defects,
internal stresses, and deterioration of the mechanical properties of the product. Therefore, ensuring
uniform temperature distribution throughout the process is a key factor. Various curing methods are
also considered, including convection heating, infrared (IR) heating, and pressing. These methods are
compared in terms of heat distribution uniformity, energy consumption, curing time, and their impact
on the mechanical properties of composite materials. The study identifies the key advantages of IR
heating, such as process acceleration, improved mechanical strength of the product, and reduced
thermal gradients. In addition, practical recommendations are proposed for precise control of
temperature regimes, ensuring uniform heat distribution, and optimizing curing conditions.
Implementing these recommendations will allow for the production of PCM-based components with
enhanced performance characteristics.
 

  • Ссылка в интернете
  • DOIhttps://doi.org/10.59048/2181-1180.1686
  • Дата создание в систему UzSCI 22-09-2025
  • Количество прочтений 24
  • Дата публикации 19-09-2025
  • Язык статьиIngliz
  • Страницы58-62
English

This paper examines the main technologies and mechanisms used in the curing
process of multilayer thick-walled parts of unmanned aerial vehicles (UAVs) made of polymer
composite materials (PCM) based on epoxy resin. The study provides a detailed analysis of the
technological features of the curing process, its kinetics, and the influence of heat transfer
mechanisms on the final quality of molded components. It is emphasized that due to the low thermal
conductivity of PCM, temperature inhomogeneity may occur during curing, leading to defects,
internal stresses, and deterioration of the mechanical properties of the product. Therefore, ensuring
uniform temperature distribution throughout the process is a key factor. Various curing methods are
also considered, including convection heating, infrared (IR) heating, and pressing. These methods are
compared in terms of heat distribution uniformity, energy consumption, curing time, and their impact
on the mechanical properties of composite materials. The study identifies the key advantages of IR
heating, such as process acceleration, improved mechanical strength of the product, and reduced
thermal gradients. In addition, practical recommendations are proposed for precise control of
temperature regimes, ensuring uniform heat distribution, and optimizing curing conditions.
Implementing these recommendations will allow for the production of PCM-based components with
enhanced performance characteristics.
 

Ўзбек

Ushbu maqolada epoksid smola asosidagi polimer kompozit materiallaridan
(PKM) ishlab chiqarilgan uchuvchisiz uchish apparatlari (UUA)ning ko‘pqavatli qalin devorli
qismlarini qotirish jarayonida qo‘llaniladigan asosiy texnologiyalar va mexanizmlar tahlil qilinadi.
Tadqiqotda qotirish jarayonining texnologik xususiyatlari, jarayonning kinetikasi va qoliplangan
qismlarning yakuniy sifatiga issiqlik uzatish mexanizmlarining ta’siri chuqur o‘rganiladi. PKMning
past issiqlik o‘tkazuvchanligi tufayli haroratning nomutanosibligi yuzaga kelishi mumkinligi
ta’kidlanadi, bu esa nuqsonlar, ichki zo‘riqishlar va mahsulotning mexanik xususiyatlariga salbiy
ta’sir ko‘rsatishi mumkin. Shunday qilib, jarayon davomida haroratning birxil taqsimlanishini
ta’minlash muhim omil hisoblanadi. Shuningdek maqolada qotirish jarayonini amalga oshirish uchun
turli usullar, jumladan, konveksion isitish, infraqizil (IK) isitish va presslashning samaradorligi ko‘rib
chiqiladi. Bu usullar issiqlikning birxil taqsimlanishi, energiya sarfi, qotirish vaqti va kompozit
materiallarning mexanik xususiyatlariga ta’siri jihatidan o‘zaro solishtiriladi. Tadqiqot natijalariga
ko‘ra, IK-isitish usulining muhim afzalliklari aniqlanadi, jumladan, jarayonning tezlashishi,
mahsulotning mexanik mustahkamligining oshishi va termal gradiyentlarni kamaytirish imkoniyati.
Shuningdek, maqolada harorat rejimlarini aniq boshqarish, issiqlikning birxil tarqalishini ta’minlash
va qotirish jarayonini optimallashtirish bo‘yicha amaliy tavsiyalar taklif etiladi. Bu tavsiyalar
PKMdan tayyorlangan yuqori sifatli mahsulotlar olishga yordam beradi.
 

Русский

В данной статье рассматриваются основные технологии и механизмы,
используемые в процессе отверждения многослойных толстостенных деталей беспилотных
летательных аппаратов (БПЛА), изготовленных из полимерных композиционных материалов
(ПКМ) на основе эпоксидной смолы. В исследовании проводится детальный анализ
технологических особенностей процесса отверждения, его кинетики, а также влияния
механизмов теплопередачи на конечное качество формованных изделий. Подчеркивается, что
из-за низкой теплопроводности ПКМ в процессе отверждения может возникать
температурная неоднородность, что приводит к дефектам, внутренним напряжениям и
ухудшению механических свойств изделия. Таким образом, обеспечение равномерного
распределения температуры в течение всего процесса является ключевым фактором. Также
рассматриваются различные методы отверждения, включая конвекционный нагрев,
инфракрасный (ИК) нагрев и прессование. Эти методы сравниваются по таким параметрам,
как равномерность распределения тепла, энергозатраты, время отверждения и влияние на
механические характеристики композиционных материалов. По результатам исследования
выявлены ключевые преимущества ИК-нагрева, в частности, ускорение процесса, повышение
механической прочности изделия и снижение температурных градиентов. Кроме того, в
работе предложены практические рекомендации по точному управлению температурными
режимами, обеспечению равномерного распределения тепла и оптимизации условий
отверждения. Реализация этих рекомендаций позволит получать изделия из ПКМ с
улучшенными эксплуатационными характеристиками.
 

Имя автора Должность Наименование организации
1 Kosimov U. . Assistan 1Tashkent State Transport University
2 Tokhirov J.K. Senior Lecturer 1Tashkent State Transport University
3 Novikov A.D. Professor Bauman Moscow State Technical University, Moscow, Russia
Название ссылки
1 1. Panov, Y. T., Chizhova, L. A., & Ermolaeva, E. V. (2014). Modern Methods of Processing Polymer Materials. Processing of Thermosetting Plastics: Textbook. Vladimir: Vladimir State University Press, 144 p. 2. Kosimov, U. D., Malysheva, G. V., & Novikov, A. D. (2024). Study of the Effect of Infrared Heating Unit Power on the Kinetics of the Curing Process of Fiberglass Parts Based on Epoxy Matrix. Railway Transport: Current Challenges and Innovations, (4), 192-196. 3. Galygin, V. E., Baronin, G. S., Tarov, V. P., & Zavrazhin, D. O. (2012). Modern Technologies for the Production and Processing of Polymer and Composite Materials: Textbook. Tambov: Tambov State Technical University Press, 180 p.
2 4. A. M. Dumanskii and Kh. Lyu, “Prediction and calculation of anisotropy of mechanical properties of unidirectional carbon fiber reinforced plastic under highspeed loading,” Inzh. Zh.: Nauka Innovatsii, No. 1, 3–10 (2020). 5. Kulik, V. I., & Nilov, A. S. (2019). Binders for Polymer Composite Materials: Textbook. Saint Petersburg: BSTU Publishing House, 52 p. 6. Urazbakhtin, F. A., Kharinova, Y. Y., & Bolonkin, V. A. (2015). Ultimate States in the Curing Process of Fiberglass Materials. University Proceedings. Aviation Technology, (3), 79-85. 7. Abdujabarov, N. A., Takhirov, J. K., & Shokirov, R. A. (2021). Current Status and Tendencies of Use of New Materials and Technologies in the Design of Unmanned Aircraft Vehicle (UAV). Universum: Technical Science, 12-6(93), 78-81.
3 8. Morozov, S. V. (2021). Effect of Physical Modification of Epoxy Matrix on the Physical-Mechanical Properties of Fiberglass. Polzunov Bulletin, (4), 157-162. 9. Solomatov, V. I., Bobryshev, A. N., & Proshin, A. P. (1983). Clusters in the Structure and Technology of Composite Building Materials. University Proceedings. Construction and Architecture, (4), 56-61. 10. Zweifel, H., Maier, R. D., & Schiller, M. (2010). Additives for Polymers: Handbook (Translated from English, Ed. by V. B. Uzdensky, A. O. Grigorov). Saint Petersburg: Profession Publishing, 1144 p. 11. Ostroumov, G. A. (1952). Free Thermal Convection in Internal Task Conditions. Leningrad: Gostekhizdat, 256 p. 12. Borodulin, A. S., Kosimov, U. D., & Malysheva, G. V. (2024). An Investigation of the Influence of Fiber Chemical Nature on the Adhesion Strength Value. Polymer Science, Series D, 17(3), 602-605.
4 12. Borodulin, A. S., Kosimov, U. D., & Malysheva, G. V. (2024). An Investigation of the Influence of Fiber Chemical Nature on the Adhesion Strength Value. Polymer Science, Series D, 17(3), 602-605. 13. Dmitriev, O. S., Zhyvenkova, A. A., & Dmitriev, A. O. (2016). Thermo-chemical analysis of the cure process of thick polymer composite structures for industrial applications. Advanced Materials & Technologies, 2, 53-60. 14. Ryngach, N. A., Bobin, K. N., & Kurlaev, N. V. (2019). Design and Manufacturing of Aircraft Structures from Composite Materials: Textbook. Novosibirsk: Novosibirsk State Technical University. ISBN 978-5- 7782-4085-8. EDN DHDGDD.
5 15. Bedilov, O. T., & Ganikhonov, A. A. (2022). Application of composite materials in aircraft structures. Theory and Practice of Modern Science, 12(90), 115-119. 16. Velichko, Ya. V., & Chirkov, P. R. (2017). Analysis of the prospects for using composite materials in the production of modern aircraft. Current Issues in Aviation and Astronautics, 13, 458-460. 17. Abdujabarov, N. A., Takhirov, J. K., & Shokirov, R. A. (2022). Repair of an unmanned aerial vehicle airframe with composite material. European Multidisciplinary Journal of Modern Science, 886-890. 18. Arutyunyan, A. R. (2020). Formulation of the criterion for fatigue strength of composite materials. Vestnik St. Petersburg State University: Mathematics, Mechanics, Astronomy, 7, 511–517.
6 18. Arutyunyan, A. R. (2020). Formulation of the criterion for fatigue strength of composite materials. Vestnik St. Petersburg State University: Mathematics, Mechanics, Astronomy, 7, 511–517. 19. Berlin, A. A. (2019). On the fatigue strength of natural materials. Vse Materialy: Entsiklopedichesky Spravochnik, 7, 2-3. 20. Yakovlev, N. O., Gulyaev, A. I., & Lashov, O. A. (2016). Crack resistance of layered polymer composite materials: A review. Proceedings of VIAM, 4, 12. 21. Baurova, N. I. (2011). Influence of nanostructured defects in carbon fibers and ribbons on sensor properties. Polymer Science, Series D, 4, 242–245. 22. Konoplin, A. Yu., & Baurova, N. I. (2016). Hardness of the near-weld zone during contact spot welding of steels using an adhesive–weld technology. Russian Metallurgy (Metally), 1308–1311.
В ожидании