Mazkur maqolada sanoat chiqindi gazlarini tozalashda qo‘llanayotgan uyurmali apparatlar samaradorligi, konstruksiyaviy afzalliklari va ularning ilmiy-tadqiqot hamda sanoat sinovlaridan olingan natijalari yoritilgan. Navoiy viloyatidagi ekologik muammolarni hal etish maqsadida ishlab chiqilgan texnologik yechimlar asosida chiqindi gazlardan chang, zaharli gazlar va ortiqcha issiqlik ajratib olish imkonini beruvchi uyurmali qurilmalarning modellari ishlab chiqilgan hamda keng ko‘lamli sinovlardan o‘tkazilgan. Tadqiqotlar davomida gaz va suyuqlik fazalarining turli holatdagi harakati, markazdan qochma kuchlar yordamida amalga oshirilgan modda va issiqlik almashinuvi, gazlarni karbonat angidrid gazidan tozalash, quritish jarayonlari hamda sovitish va isitish jarayonlarining intensivligi tahlil qilingan. Uyurmali apparatlar orqali jarayonlar tezligi 4–10 martagacha oshishi, energiya tejamkorligi 2–3 baravar yaxshilanishi va gidravlik qarshilikning nisbatan past bo‘lishi tajribalar asosida aniqlangan. Qurilmalar oddiy va ixcham tuzilishga ega bo‘lib, ekspluatatsiya qilishda kam xarajat talab etadi. Shuningdek, gazlarning suyuqliklar bilan kontaktlashuvi asosida issiqlik almashinuvi va absorbsiyalash jarayonlari samaradorligi ham yuqori ekanligi eksperimental isbotlandi. Tadqiqot natijalariga ko‘ra, ushbu qurilmalar changni 99 %gacha, zaharli gazlarni esa 90–98 %gacha samarali ushlab qoladi. Maqolada keltirilgan ilmiy asoslangan yondashuvlar uyurmali apparatlarning mahalliy va xalqaro sanoat tarmoqlarida keng joriy etilish imkoniyatini tasdiqlaydi. Xulosa sifatida uyurmali texnologiyalar ekologik xavfsizlikni ta’minlashda istiqbolli yechim sifatida tavsiya etiladi.
Mazkur maqolada sanoat chiqindi gazlarini tozalashda qo‘llanayotgan uyurmali apparatlar samaradorligi, konstruksiyaviy afzalliklari va ularning ilmiy-tadqiqot hamda sanoat sinovlaridan olingan natijalari yoritilgan. Navoiy viloyatidagi ekologik muammolarni hal etish maqsadida ishlab chiqilgan texnologik yechimlar asosida chiqindi gazlardan chang, zaharli gazlar va ortiqcha issiqlik ajratib olish imkonini beruvchi uyurmali qurilmalarning modellari ishlab chiqilgan hamda keng ko‘lamli sinovlardan o‘tkazilgan. Tadqiqotlar davomida gaz va suyuqlik fazalarining turli holatdagi harakati, markazdan qochma kuchlar yordamida amalga oshirilgan modda va issiqlik almashinuvi, gazlarni karbonat angidrid gazidan tozalash, quritish jarayonlari hamda sovitish va isitish jarayonlarining intensivligi tahlil qilingan. Uyurmali apparatlar orqali jarayonlar tezligi 4–10 martagacha oshishi, energiya tejamkorligi 2–3 baravar yaxshilanishi va gidravlik qarshilikning nisbatan past bo‘lishi tajribalar asosida aniqlangan. Qurilmalar oddiy va ixcham tuzilishga ega bo‘lib, ekspluatatsiya qilishda kam xarajat talab etadi. Shuningdek, gazlarning suyuqliklar bilan kontaktlashuvi asosida issiqlik almashinuvi va absorbsiyalash jarayonlari samaradorligi ham yuqori ekanligi eksperimental isbotlandi. Tadqiqot natijalariga ko‘ra, ushbu qurilmalar changni 99 %gacha, zaharli gazlarni esa 90–98 %gacha samarali ushlab qoladi. Maqolada keltirilgan ilmiy asoslangan yondashuvlar uyurmali apparatlarning mahalliy va xalqaro sanoat tarmoqlarida keng joriy etilish imkoniyatini tasdiqlaydi. Xulosa sifatida uyurmali texnologiyalar ekologik xavfsizlikni ta’minlashda istiqbolli yechim sifatida tavsiya etiladi.
В статье рассмотрены эффективность вихревых аппаратов, применяемых для очистки промышленных отходящих газов, их конструктивные преимущества, а также результаты проведённых научных исследований и промышленных испытаний. На основе разработанных технологических решений, направленных на устранение экологических проблем Навоийской области, были созданы модели вихревых устройств, обеспечивающих извлечение из отходящих газов пыли, токсичных компонентов и избыточного тепла, и проведены их широкомасштабные испытания. В ходе исследований проанализированы движение газовой и жидкой фаз в различных режимах, массо- и теплообменные процессы, осуществляемые за счёт центробежных сил, очистка газов от диоксида углерода, процессы сушки, а также интенсивность процессов охлаждения и нагрева. Экспериментально установлено, что использование вихревых аппаратов позволяет увеличить скорость протекания процессов в 4–10 раз, повысить энергоэффективность в 2–3 раза и одновременно обеспечить относительно низкий гидравлический сопротивление. Аппараты отличаются простой и компактной конструкцией, что обусловливает низкие эксплуатационные затраты. Кроме того, экспериментально подтверждена высокая эффективность теплообмена и абсорбции, основанных на контакте газов с жидкой фазой. Согласно результатам исследований, данные устройства способны улавливать до 99 % пылевых частиц и 90–98 % токсичных газов. Научно обоснованные подходы,
представленные в статье, подтверждают перспективы широкого внедрения вихревых аппаратов в национальную и международную промышленность. В качестве вывода подчеркивается, что вихревые
технологии могут рассматриваться как перспективное решение для обеспечения экологической безопасности.
The article examines the effciency of vortex apparatus used for cleaning industrial exhaust gases, their design advantages, as well as the results of conducted scientific research and industrial tests. Based on technological
solutions developed to address environmental problems in the Navoi region, models of vortex devices were created to extract dust, toxic components, and excess heat from exhaust gases, and large-scale tests were carried out. The study analyzed the movement of gas and liquid phases under various conditions, mass and heat transfer processes driven by centrifugal forces, removal of carbon dioxide from gases, drying processes, as well as the intensity of cooling and heating. Experimental results demonstrated that the use of vortex apparatus increases process rates by 4–10 times, improves energy efficiency by 2–3 times, while ensuring relatively low hydraulic resistance. The devices are characterized by a simple and compact design, which results in low operating costs. In addition, the
high efficiency of heat exchange and absorption processes based on gas–liquid contact was experimentally confirmed. According to the results, these devices are capable of capturing up to 99% of dust particles and 90–98% of toxic gases. The scientifically substantiated approaches presented in the article confirm the prospects for the wide implementation of vortex apparatus in both national and international industries. In conclusion, vortex technologies are emphasized as a promising solution for ensuring environmental safety.
| № | Имя автора | Должность | Наименование организации |
|---|---|---|---|
| 1 | Axmatov A.A. | texnika fanlari doktori, “Avtomatlashtirish va boshqaruv” kafedrasi dotsenti | Navoiy davlat konchilik va texnologiyalar universiteti |
| № | Название ссылки |
|---|---|
| 1 | Abdollahi, H., Shahraki, S., & Motahari-Nezhad, M. (2017). A review on the effects of different parameters on contact heat transfer. Thermophysics and Aeromechanics, 24, 499–512. https://doi. org/10.1134/S0869864317040011 |
| 2 | Bakhronov, Kh. Sh., Levdanskiy, A. E., & Akhmatov, A. A. (2025). Effektivnostʹ primeneniya vikhrevykh apparatov dlya provedeniya gidrodinamicheskikh, teplo- i massoobmennykh protsessov [Effectiveness of vortex devices for hydrodynamic, heat and mass transfer processes]. Navoi: Science Algorithm. |
| 3 | Bakhronov, Kh. Sh., Sanakulov, K. S., & Akhmatov, A. A. (2021). Vikhrevoy skrubber dlya ochistki i okhlazhdeniya gazov [Vortex scrubber for gas purification and cooling]. Patent No. FAP 01755. Agency for Intellectual Property, Tashkent. |
| 4 | Barabash, P. A., Solomakha, A. S., Gurov, A. I., & Panchenko, O. A. (2020a). Regimes of motion of water-air flow in a short vertical tube with the underfeed of phases. Journal of Engineering Physics and Thermophysics, 93(2), 443–451. https://doi.org/10.1007/s10891-020-02139-y |
| 5 | Barabash, P. A., Solomakha, A. S., Kudelya, P. P., & Panchenko, O. A. (2017). UA Utility Model Patent No. 121684. http://uapatents.com/4-121684-kontaktnijj-teploobminnik.html |
| 6 | Barabash, P., Solomakha, A., & Sereda, V. (2020b). Experimental investigation of heat and mass transfer characteristics in direct contact exchanger. International Journal of Heat and Mass Transfer, 162, 120359. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120359 |
| 7 | Bezrodnyy, M. K., Rachinskiy, A. Yu., Goliyad, N. N., & Barabash, P. A. (2015). Eksperimentalʹnoe issledovanie koeffitsientov teplo- i massoobmena pri utilizatsii teploty parogazovogo potoka v fakele kapelʹ mekhanicheskoy forsunki [Experimental investigation of heat and mass transfer coefficients during heat recovery of a steam-gas flow in the spray of a mechanical nozzle]. Vostochno-Evropeyskiy Zhurnal Peredovykh Tekhnologiy [Eastern-European Journal of Enterprise Technologies], 6(78), 50–59. https://doi.org/10.15587/1729-4061.2015.55484 |
| 8 | Dalluge, D. L., Whitmer, L. E., Polin, J. P., Choi, Y. S., Shanks, B. H., & Brown, R. C. (2019). Comparison of direct and indirect contact heat exchange to improve recovery of bio-oil. Applied Energy, 251, 113346. https://doi.org/10.1016/j.apenergy.2019.113346 |
| 9 | Farakhov, T. M., Afanas’ev, E. P., & Laptev, A. G. (2016). Intensifikatsiya i raschet teploobmena v kanalah s khaotichnymi nasadkami (upakovkami) [Intensi�ication and calculation of heat transfer in channels with chaotic packings]. Nadezhnostʹ i Bezopasnostʹ Energetiki [Reliability and Safety of Energy], (2), 31–33. https://doi.org/10.24223/1999-5555-2016-0-2-42-46 |
| 10 | Fei, Y., Xiao, Q.-T., Xu, J.-X., Pan, J.-X., Wang, S.-B., Wang, H., & Huang, J.-W. (2015). A novel approach for measuring bubbles uniformity and mixing efficiency in a direct contact heat exchanger. Energy, 2313–2320. https://doi.org/10.1016/j.energy.2015.10.126 |
| 11 | Frolov, A. S., Voinov, N. A., Bogatkova, A. V., et al. (2021). Resistance of tangential swirlers with rectilinear channel walls. Theoretical Foundations of Chemical Engineering, 55, 914–922. https://doi. org/10.1134/S0040579521040254 |
| 12 | Kakaç, S., Liu, H., & Pramuanjaroenkij, A. (2020). Heat exchangers (4th ed.). CRC Press. https:// doi.org/10.1201/9780429469862 |
| 13 | Lapteva, E. A., & Laptev, A. G. (2016). Models and calculations of the effectiveness of gas and liquid cooling in foam and �ilm apparatuses. Theoretical Foundations of Chemical Engineering, 50(4), 430–438. https://doi.org/10.1134/S0040579516040394 |
| 14 | Prodanuks, T., Vitolins, V., Veidenbergs, I., & Blumberga, D. (2017). Comparison of theoretical and practical energy ef�iciency values in indirect contact gas condensing unit. Energy Procedia, 128, 520–524. https://doi.org/10.1016/j.egypro.2017.09.072 |
| 15 | Rao, N. M., Maiti, B., & Das, P. K. (2005). Comparison of dynamic performance for direct and fluid coupled indirect heat exchange systems. International Journal of Heat and Mass Transfer, 48, 3244–3252. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.021 |
| 16 | Voinov, N. A., Zemtsov, D. A., Zhukova, O. P., et al. (2019). Hydraulic resistance of tangential swirlers. Chemical and Petroleum Engineering, 55, 51–56. https://doi.org/10.1007/s10556-019- 00584-y |
| 17 | Xu, J.-X., Xiao, Q.-T., Chen, Y., Fei, Y., Pan, J.-X., & Wang, H. (2016). A modified L2-star discrepancy method for measuring mixing uniformity in a direct contact heat exchanger. International Journal of Heat and Mass Transfer, 97, 70–76. https://doi.org/10.1016/j. ijheatmasstransfer.2016.01.064 |
| 18 | Xu, J.-X., Xiao, Q.-T., Lv, Z., Huang, J., Xiao, R., & Pan, J. (2019). New metrics for measuring multiphase mixing effects in a direct-contact heat exchanger. Applied Thermal Engineering, 147, 592– 601. https://doi.org/10.1016/j.applthermaleng.2018.10.074 |
| 19 | Yusupbekov, N. R., Zokirov, S. G., & Nurmuhamedov, H. S. (2023). Kimyoviy texnologiya asosiy jarayon va qurilmalar (Narziya, hisob, loyiha) [Chemical technology: Basic processes and devices (Theory, calculation, design)]. Tashkent: Sharq. |
| 20 | Zeng, Z., Sadeghpour, A., & Ju, Y. S. (2018). Thermohydraulic characteristics of a multi-string direct-contact heat exchanger. International Journal of Heat and Mass Transfer, 126, 536–544. https:// doi.org/10.1016/j.ijheatmasstransfer.2018.05.060 |