O‘zandagi jarayonlarni monitoring qilish va bashoratlash muammosini hal etishning dolzarbligi shundaki, bugungi kungacha nazariy tadqiqotlar yakuniga yetmagan va ular oqimlarning gidravlik nazariyasi hamda morfologik jihatlarini o‘rganishni uyg‘unlashtirish orqali rivojlantirishni talab etadi. Ayniqsa, dunyodagi loyqa cho‘kindilar ko‘p hisoblangan Amudaryoda yildan yilga daryo o‘zanini loyqa bosishi va ko‘tarilishi davom etmoqda, bu esa o‘zan deformatsiyasiga olib keladi hamda daryo o‘zanida joylashgan gidrotexnik inshootlarning barqaror ishlashiga salbiy ta’sir ko‘rsatadi. Ushbu maqolada Amudaryoning oʻrta oqimidagi oʻzan jarayonlari masofaviy zondlash ma’lumotlaridan foydalangan holda oʻrganildi. Bunda daryo oʻzanini xaritalash uchun Google Earth Engine platformasi va Landsat sun’iy yoʻldosh tasvirlaridan foydalanildi. Daryodan Amu Buxoro mashina kanaliga suv olish zonasida daryo oʻzanining oʻzgarishi tahlil qilindi. Shuningdek, Amudaryodan ABMKga olingan uzoq yillik suv miqdori o‘rganildi. So‘nggi uch yillik ma’lumotlar tahlili bo‘yicha esa maksimal olingan suv miqdori 2025-yilning iyun oyiga to‘g‘ri kelgani kuzatildi. ABMK suv olish hududida oʻzan relyefi va morfologiyasini aniqlash ishlari stvorlar kesimida olib borildi. Tahlillarda daryo o‘zanida chuqurlik va kenglik bo‘yicha deformatsiyalar tez sodir bo‘lishi kuzatildi. Amudaryoning o‘rta oqimida qirg‘oq yuvilishida oqim tezligi 2 m/s gacha kuzatilgan va yuvish sikli 10–60 m, chuqurligi esa 5–10 m ni tashkil etgan.
O‘zandagi jarayonlarni monitoring qilish va bashoratlash muammosini hal etishning dolzarbligi shundaki, bugungi kungacha nazariy tadqiqotlar yakuniga yetmagan va ular oqimlarning gidravlik nazariyasi hamda morfologik jihatlarini o‘rganishni uyg‘unlashtirish orqali rivojlantirishni talab etadi. Ayniqsa, dunyodagi loyqa cho‘kindilar ko‘p hisoblangan Amudaryoda yildan yilga daryo o‘zanini loyqa bosishi va ko‘tarilishi davom etmoqda, bu esa o‘zan deformatsiyasiga olib keladi hamda daryo o‘zanida joylashgan gidrotexnik inshootlarning barqaror ishlashiga salbiy ta’sir ko‘rsatadi. Ushbu maqolada Amudaryoning oʻrta oqimidagi oʻzan jarayonlari masofaviy zondlash ma’lumotlaridan foydalangan holda oʻrganildi. Bunda daryo oʻzanini xaritalash uchun Google Earth Engine platformasi va Landsat sun’iy yoʻldosh tasvirlaridan foydalanildi. Daryodan Amu Buxoro mashina kanaliga suv olish zonasida daryo oʻzanining oʻzgarishi tahlil qilindi. Shuningdek, Amudaryodan ABMKga olingan uzoq yillik suv miqdori o‘rganildi. So‘nggi uch yillik ma’lumotlar tahlili bo‘yicha esa maksimal olingan suv miqdori 2025-yilning iyun oyiga to‘g‘ri kelgani kuzatildi. ABMK suv olish hududida oʻzan relyefi va morfologiyasini aniqlash ishlari stvorlar kesimida olib borildi. Tahlillarda daryo o‘zanida chuqurlik va kenglik bo‘yicha deformatsiyalar tez sodir bo‘lishi kuzatildi. Amudaryoning o‘rta oqimida qirg‘oq yuvilishida oqim tezligi 2 m/s gacha kuzatilgan va yuvish sikli 10–60 m, chuqurligi esa 5–10 m ni tashkil etgan.
Актуальность решения проблемы мониторинга и прогнозирования русловых процессов заключается в том, что до настоящего времени теоретические исследования не завершены и требуют дальнейшего развития путём интеграции гидравлической теории течений с изучением морфологических особенностей. Особенно это характерно для Амударьи, которая является одной из наиболее мутных рек в мире: из года в год русло реки заиливается и повышается, что приводит к его деформации и оказывает негативное влияние на устойчивую работу гидротехнических сооружений, расположенных в русле. В данной статье исследованы русловые процессы в среднем течении Амударьи с использованием данных дистанционного зондирования. Для картографирования русла применялись платформа Google Earth Engineи спутниковые снимки Landsat. Проведён анализ изменения русла в районе водозабора из Амударьи в Аму-Бухарский машинный канал. Также изучены многолетние объёмы забора воды из Амударьи в Аму-Бухарский машинный канал. По результатам анализа данных за последние три года
установлено, что максимальный объём водозабора пришёлся на июнь 2025 года. В зоне водозабора Аму-Бухарского машинного канала проведены исследования рельефа и морфологии русла по створам. Анализ показал, что деформации русла по глубине и ширине происходят достаточно быстро. В среднем течении Амударьи скорость течения при размыве берегов достигала 2 м/с, при этом цикл размыва составлял от 10 до 60 м, а глубина – от 5 до 10 м.
The relevance of addressing the problem of monitoring and forecasting channel processes lies in the fact that theoretical studies have not yet been completed and require further development by integrating the hydraulic theory of flows with the study of morphological features. This is especially true for the Amudarya, which is one of the most turbid rivers in the world: year after year, the riverbed becomes increasingly silted and elevated, leading to channel deformation and negatively affecting the stable operation of hydraulic structures
located in the riverbed. This article investigates channel processes in the middle course of the Amudarya using remote sensing data. For riverbed mapping, the Google Earth Engine platform and Landsat satellite imagery were employed. The dynamics of channel changes in the water intake zone from the Amudarya to the
Amu-Bukhara Machine Canal were analyzed. Long-term volumes of water intake from the Amudarya to the Amu-Bukhara Machine Canal were also studied. Based on the analysis of data over the past three years, it was found that the maximum water intake occurred in June 2025. In the water intake zone of the Amu-Bukhara
Machine Canal, studies of riverbed relief and morphology were carried out across selected cross-sections. The analysis revealed that deformations of the riverbed in terms of depth and width occur rather rapidly. In the middle course of the Amudarya, the flow velocity during bank erosion reached up to 2 m/s, with erosion cycles ranging from 10 to 60 m, and depths between 5 and 10 m.
| № | Имя автора | Должность | Наименование организации |
|---|---|---|---|
| 1 | Ikromov O.E. | tayanch doktorant | Irrigatsiya va suv muammolari ilmiy-tadqiqot instituti |
| № | Название ссылки |
|---|---|
| 1 | Alexandrova, M. V., & Dhaliwal, S. (2010). World War III: Will it be the struggle for clean and safe drinking water? Umwelt und Gesundheit Online, 3, 41–45. https://hee-journal.uni-koeln.de/sites/hee- journal/user_upload/U_G_Alexandrova___Dhaliwal_2010.pdf |
| 2 | Barakat, A., Ouargaf, Z., Khellouk, R., El Jazouli, A., & Touhami, F. (2019). Land use/land cover change and environmental impact assessment in Béni-Mellal District (Morocco) using remote sensing and GIS. Earth Systems & Environment, 3(1), 113–125. https://doi.org/10.1007/s41748- 019-00088-y |
| 3 | Billah, M. M. (2018). Mapping and monitoring erosion-accretion in an alluvial river using satellite imagery — the river bank changes of the Padma River in Bangladesh. Quaestiones Geographicae, 37, 87–95. https://doi.org/10.2478/quageo-2018-0027 |
| 4 | Conrad, C., Dech, S. W., Hafeez, M., Lamers, J., Martius, C., & Strunz, G. (2007). Mapping and assessing water use in a Central Asian irrigation system by utilizing MODIS remote sensing products. Irrigation and Drainage Systems, 21(3–4), 197–218. https://doi.org/10.1007/s10795-007-9029-z |
| 5 | Dabojani, D., Mithun, K., & Kanti, K. (2014). River change detection and bank line erosion recognition using remote sensing and GIS. Forum geografic, 13(2), 152–158. https://doi.org/10.5775/ fg.2067-4635.2014.100.i |
| 6 | Glantz, M. H. (2005). Water, climate, and development issues in the Amu Darya Basin. Mitigation and Adaptation Strategies for Global Change, 10(1), 23–50. https://doi.org/10.1007/s11027-005- 7829-8 |
| 7 | Hagg, W., Hoelzle, M., Wagner, S., Mayr, E., & Klose, Z. (2013). Glacier and runoff changes in the Rukhk catchment, upper Amu-Darya basin until 2050. Global and Planetary Change, 110, 62–73. https://doi.org/10.1016/j.gloplacha.2013.05.006 |
| 8 | Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., & Zheng, Y. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment, 202, 166–176. https://doi.org/10.1016/j.rse.2017.02.021 |
| 9 | Ikramova, M., Dalabaev, U., Xodjiev, A., Kabilov, X., & Ikromov, O. (2023). Iqlim o‘zgarishi va antropogen ta’sir ostidagi Amudaryo tizimi dinamikasi va evolyutsiyasi. |
| 10 | Kaplan, G., & Avdan, U. (2017). Object-based water body extraction model using Sentinel-2 satellite imagery. European Journal of Remote Sensing, 50(1), 137–143. https://doi.org/10.1080/2279 7254.2017.1297540 |
| 11 | Kostianoy, A. G., Lebedev, S. A., & Solovyov, D. M. (2013). Satellite monitoring of the Caspian Sea, Kara-Bogaz-Gol Bay, Sarykamysh and Altyn Asyr lakes, and Amu Darya River. В I. S. Zonn & A. G. Kostianoy (Eds.), The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan. Springer. https://doi.org/10.1007/978-3-642-38607-7 |
| 12 | Kumar, L., & Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1509. https://doi.org/10.3390/rs10101509 MDPI |
| 13 | Langat, P. K., Kumar, L., & Koech, R. (2019a). Monitoring river channel dynamics using remote sensing and GIS techniques. Geomorphology, 325, 92–102. https://doi.org/10.1016/j. geomorph.2018.10.007 |
| 14 | Langat, P. K., Kumar, L., Koech, R., & Ghosh, M. K. (2019b). Monitoring of land use/land-cover dynamics using remote sensing: A case of Tana River Basin, Kenya. Environmental Monitoring and Assessment, 191, 535. https://doi.org/10.1007/s10661-019-7642-5 |
| 15 | Ortega, J. A., Razola, L., & Garzón, G. (2014). Recent human impacts and change in dynamics and morphology of ephemeral rivers. Natural Hazards and Earth System Sciences, 14(3), 713–730. https:// doi.org/10.5194/nhess-14-713-2014 nhess.copernicus.org |
| 16 | Schmid, J. (2017). Using Google Earth Engine for Landsat NDVI time series analysis to indicate the present status of forest stands [Bachelor’s thesis, Georg-August-Universität Göttingen]. (без DOI) OUCI |
| 17 | Wang, C., Jia, M., Chen, N., & Wang, W. (2018). Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River. ISPRS International Journal of Geo-Information, 7(6), 211. https://doi.org/10.3390/ijgi7060211 SpringerLink |
| 18 | Xiong, J., Thenkabail, P. S., Gumma, M. K., Teluguntla, P., Poehnelt, J., Congalton, R. G., Yadav, K., & Thau, D. (2017). Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. Remote Sensing, 9(10), 1065. https://doi.org/10.3390/rs9101065 MDPI |
| 19 | Yousefi, S., Keesstra, S., Pourghasemi, H. R., Surian, N., & Mirzaee, S. (2017). Interplay between river dynamics and international borders: The Hirmand. Science of the Total Environment, 609, 820– 835. https://doi.org/10.1016/j.scitotenv.2017.07.230 |