The article considers the results of the analysis of autotransformers operation mode
monitoring. The time diagram of active load current and oil temperature of autotransformer
TashTES AT-3 is established and during one year changes of these variables and basic
parameters of autotransformer were observed. Technical faults of the power transformer and
high power autotransformer are established and methods of their elimination are determined.
Damage of transformers and autotransformers with voltage of 110-500 kV of about 30% of the
total number of outages which were accompanied by internal short-circuits and two main causes
of damage were determined. The main causes of technological failures, which were not
accompanied by internal short-circuits, are as follows: 20% of failures in operation of the onload tap-changer, 16% of oil leaks from the bushings, 13% of oil leaks and lowering of oil from
the transformer due to violation of welded joints and rubber seals, 4% of engine damage to oil
pumps of the cooling system, 3% of pressure increase in high-voltage hermetic bushings, 2% of
film protection shell damage. The main reasons of technological violations accompanied by
internal short-circuit in the transformer are as follows: breakdown of internal insulation of highvoltage bushings, insufficient short-circuit resistance, wear and tear of winding insulation,
breakdown of insulation
Maqolada avtotransformatorning ish rejimlari tahliliy monitoringi yuritilgan. Bu monitoring
asosida TashIESdagi AT-3 avtotransformatorining toki, aktiv yuklamasi va moyi
temperaturasining vaqtga bog’liqlik grafigi qurilgan hamda bir yil davomida bu kattaliklarning
o'zgarishlari kuzatilgan va AT-3 avtotransformatorining asosiy parametrlari ham
hisoblangan.Undan tashqari katta quvvatli transformator va avtotransformatorning tehnik
nosozliklari hamda uni bartaraf qilish usullari, nominal kattaliklari jadval asosida tuzilgan va
shikastlanish tahlillari keltirilgan. 110-500 kV kuchlanishli transformator va
avtotransformatorda ichki qisqa tutashuvlarning kelib chiqish sabablari hamda keltiriladigan
zararning tahminan 30% ini tashkil qilganligi aniqlangan. quyidagi ko'rib chiqilgan avariya
holatlari uchun: RPN ning ish davomida buzilishi 20% ni, chiqishlardan moyning oqib ketishi
16% ni, transformatorning payvandlangan qismlari va zichlovchi rezinalaridan moyning oib
ketishi va qo'yib yuborishi 13% ni, moy nasolari va sovutish tizimidagi motorlarning ishdan
chiqishi 4% ni, germetik chiqishlaridagi simning ko'payib ketishidan 3% ni tashkil etadi.
Transformatordagi asosiy qisqa tutashuv sabablari quyidagilarga ko'ra kelib chiqqan: yuqori
kuchlanish chiqishi izolyaciyasining teshilishi, qisqa tutashuv tokiga chidamliligi etarli emasligi,
chulg’amning izolyaciyasi buzilishi, chulg’am izolyaciyasi teshilishi.
The article considers the results of the analysis of autotransformers operation mode
monitoring. The time diagram of active load current and oil temperature of autotransformer
TashTES AT-3 is established and during one year changes of these variables and basic
parameters of autotransformer were observed. Technical faults of the power transformer and
high power autotransformer are established and methods of their elimination are determined.
Damage of transformers and autotransformers with voltage of 110-500 kV of about 30% of the
total number of outages which were accompanied by internal short-circuits and two main causes
of damage were determined. The main causes of technological failures, which were not
accompanied by internal short-circuits, are as follows: 20% of failures in operation of the onload tap-changer, 16% of oil leaks from the bushings, 13% of oil leaks and lowering of oil from
the transformer due to violation of welded joints and rubber seals, 4% of engine damage to oil
pumps of the cooling system, 3% of pressure increase in high-voltage hermetic bushings, 2% of
film protection shell damage. The main reasons of technological violations accompanied by
internal short-circuit in the transformer are as follows: breakdown of internal insulation of highvoltage bushings, insufficient short-circuit resistance, wear and tear of winding insulation,
breakdown of insulation
В статье рассматриваются результаты анализа мониторинга режима работы
автотрансформаторов. Установлена временная диаграмма тока активной нагрузки и
температуры масла автотрансформатора ТашТЭС АТ-3 и в течение одного года
наблюдались изменения этих переменных и основных параметров автотрансформатора.
Установлены технические неисправности силового трансформатора и
автотрансформатора большой мощности и созданы методы их устранения. Определен
ущерб трансформаторов и автотрансформаторов напряжением110-500 кВ около 30%
от общего числа отключений, который сопровождался возникновением внутренних
коротких замыканий и установлены две основные причины повреждаемости. Основными
причинами технологических нарушений, не сопровождавшихся внутренними КЗ, являются
следующие:нарушения в работе РПН - 20%, течи масла из вводов - 16%,течи и спуск
масла из трансформатора из-за нарушения сварных соединений и резиновых уплотнений -13%,повреждение двигателей маслонасосов системы охлаждения - 4%,повышение
давления в высоковольтных герметичных вводах - 3%,повреждение оболочки пленочной
защиты - 2%.Основными причинами технологических нарушений, сопровождающиеся
внутренним КЗ в трансформаторе, являются:пробой внутренней изоляции
высоковольтных вводов, недостаточная стойкость при КЗ, износ изоляции обмоток,
пробой изоляции.
№ | Имя автора | Должность | Наименование организации |
---|---|---|---|
1 | Isakov F.U. | assistent | TDTU |
№ | Название ссылки |
---|---|
1 | 1. VaganovM.A. Transformatorы. – SPB.: Izdatelstvo SPBGETU«LETI», 2014. – 111 c. 2. Salimov J.S., Pirmatov N.B., Bekchanov B.E. Transformatorlar va avtotransformatorlar, Toshkent, Vektor – press, 2010. – 224 s. 3. Alimxodjaev K.T., Pirmatov N.B., Ziyoxodjaev T.I., Elektr mashinalari, Toshkent Fan va texnologiya, 2018. – 344 c. 4. Salimov J.S., Pirmatov N.B., Elektr mashinalari. Toshkent, O„zbekiston faylasuflari milliy jamiyati nashriyoti, 2011, - 406s. 5. Ahmad, M. (2010). High Performance AC Drives. Modeling Analysis and Control, Springer, ISBN 978-3-642-13149-3, London, UK Техника фанлари ва инновация №2/2019 й. Technical science and innovation 218 6. Boldea, I. & Tutelea, L. (2010). Electric Machines. Steady State, Transients and Design with MATLAB, CRC Press, ISBN 978-1-4200-5572-6, Boca Raton, USA 7. Bose, B. (2006). Power Electronics and Motor Drives, Elsevier, ISBN 978-0-12-088405-6, San Diego, USA 8. Chiasson, J. (2005). Modeling and High-Performance Control of Electrical Machines, IEEE Press, Wiley Interscience, ISBN 0-471-68449-X, Hoboken, USA 9. De Doncker, R.; Pulle, D. & Veltman, A. (2011). Advanced Electrical Drives. Analysis, Modeling, Control, Springer, ISBN 978-94-007-0179-3, Dordrecht, Germany 10. Krause, P.; Wasynczuk, O. & Sudhoff, S. (2002). Analysis of Electric Machinery and Drive Systems (sec. ed.), IEEE Press, ISBN 0-471-14326-X, Piscataway, USA 11. Marino, R.; Tomei, P. & Verrelli, C. (2010). Induction Motor Control Design, Springer, ISBN 978-1-84996-283-4, London, UK 12. Ong, C-M. (1998). Dynamic Simulation of Electric Machinery using Matlab/Simulink, Prentice Hall, ISBN 0-13-723785-5, New Jersey, USA 13. Simion, Al.; Livadaru, L. & Lucache, D. (2009). Computer-Aided Simulation on the Reversing Operation of the Two-Phase Induction Machine. International Journal of Mathematical Models and Methods in Applied Sciences, Iss. 1, Vol. 3, pp. 37-47, ISSN 1998-0140 14. Simion, Al. (2010). Study of the Induction Machine Unsymmetrical Condition Using In Total Fluxes Equations. Advances in Electrical and Computer Engineering, Iss. 1 (February 2010), pp. 34-41, ISSN 1582-7445 15. Simion, Al. & Livadaru, L. (2010). On the Unsymmetrical Regime of Induction Machine. Bul. Inst. Polit. Iaşi, Tomul LVI(LX), Fasc.4, pp. 79-91, ISSN 1223-8139 16. Simion, Al.; Livadaru, L. & Munteanu, A. (2011). New Approach on the Study of the Steady-State and Transient Regimes of Three-Phase Induction Machine. Buletinul AGIR, Nr.4/2011, pp. 1-6, ISSN-L 1224-7928 17. R. Marino, P. Tomei, and C.M. Verrelli. A global tracking control for speedsensorless induction motors. Automatica, 40(6):1071–1077, 2004. 18. Marino, P. Tomei, and C.M. Verrelli. Adaptive control for speed-sensorless induction motors with uncertain load torque and rotor resistance. International Journal of Adaptive Controland Signal Processing, 19(9):661–685, 2005. 19. R. Marino, P. Tomei, and C.M. Verrelli. A nonlinear tracking control for sensorlessinductionmotors. Automatica, 41(6):1071–1077, 2005. 20. Marino, P. Tomei, and C.M. Verrelli. An adaptive tracking control from current measurements for induction motors with uncertain load torque and rotor resistance. Automatica, 44(10):2593–2599, 2008. 21. Marino, P. Tomei, and C.M. Verrelli. A nonlinear tracking control for sensorless induction motors with uncertain load torque. International Journal of Adaptive Control and SignalProcessing, 22(1):1–22, 2008. |