382

In this work  is considered a differtial game of the second order, when control 
functions  of  the players  satisfies geometric  constraints. The proposed method  substantiates  the 
parallel  approach  strategy  in  this  differential  game  of  the  second  order.  The  new  sufficient 
solvability conditions are obtained for problem of the pursuit.

  • Ссылка в интернете
  • DOI
  • Дата создание в систему UzSCI 04-03-2020
  • Количество прочтений 372
  • Дата публикации 10-07-2019
  • Язык статьиIngliz
  • Страницы23-28
English

In this work  is considered a differtial game of the second order, when control 
functions  of  the players  satisfies geometric  constraints. The proposed method  substantiates  the 
parallel  approach  strategy  in  this  differential  game  of  the  second  order.  The  new  sufficient 
solvability conditions are obtained for problem of the pursuit.

Ўзбек

Ushbu  ma’ruzada  boshqaruvlar  Gronoull  chegaralanishga  ega  holda 
ikkinchi tartibli differensial o‘yinlar uchun tutish masalasi o‘rganiladi. Bunda quvlovchi uchun 
parallel quvish strategiyasi quriladi va uning yordamida tutish masalasi uchun yetarli shartlar 
keltiriladi.  

Русский

В работе рассматривается дифференциальная игра второго порядка 
при ограничениях Гронуолла на управления игроков. При  этом предлагается стратегия 
параллельного  преследования  для  преследователя  и  при  помощи  этой  стратегии 
решается задача преследования.  

Имя автора Должность Наименование организации
1 Mirzamaxmudov U.A. Namdu
2 Doliyev O.B. Namdu
3 Axmedov O.U. Namdu
Название ссылки
1 Gronwall T.H. (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2):293–296.
2 Azamov A.A., Samatov B.T.(2010) The Π-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management, St. Petersburg: 33 – 47.
3 Subbotin A.I., Chentsov A.G. (1981). Optimization of Guaranteed Result in Control Problems. Nauka, Moscow.
4 Jack K. Hale. (1980). Ordinary differential equations. Krieger Malabar, Florida: 28 – 37.
В ожидании