Antibiotics have enabled the treatment of bacterial infections like meningitis and bacteraemia, which were once untreatable and often fatal. However, in recent decades, the overuse and misuse of antibiotics, along with various social and economic factors, have accelerated the spread of antibiotic-resistant bacteria, rendering many treatments ineffective. Today, antimicrobial resistance (AMR) claims at least 700,000 lives globally each year. The World Health Organization (WHO) warns this figure could soar to 10 million annually by 2050 if new, more effective treatments are not developed, emphasizing the urgent nature of this health crisis. In response to the growing threat of antibiotic resistance, the WHO released a list of priority pathogens in February 2017, including the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which pose the greatest danger to humans. Understanding the resistance mechanisms in these bacteria is crucial for developing new antimicrobial therapies. This review explores the modes of action and resistance mechanisms of widely used antimicrobials, as well as the current state of AMR in the most critical resistant bacteria identified by the WHO’s global priority pathogens list.
Antibiotics have enabled the treatment of bacterial infections like meningitis and bacteraemia, which were once untreatable and often fatal. However, in recent decades, the overuse and misuse of antibiotics, along with various social and economic factors, have accelerated the spread of antibiotic-resistant bacteria, rendering many treatments ineffective. Today, antimicrobial resistance (AMR) claims at least 700,000 lives globally each year. The World Health Organization (WHO) warns this figure could soar to 10 million annually by 2050 if new, more effective treatments are not developed, emphasizing the urgent nature of this health crisis. In response to the growing threat of antibiotic resistance, the WHO released a list of priority pathogens in February 2017, including the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species), which pose the greatest danger to humans. Understanding the resistance mechanisms in these bacteria is crucial for developing new antimicrobial therapies. This review explores the modes of action and resistance mechanisms of widely used antimicrobials, as well as the current state of AMR in the most critical resistant bacteria identified by the WHO’s global priority pathogens list.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Khujaeva S.A. | Assistant professor | Alfraganus university |
№ | Havola nomi |
---|---|
1 | Coculescu B.-I. Antimicrobial resistance induced by genetic changes. J. Med. Life. 2009;2:114–123. [PMC free article] [PubMed] [Google Scholar] Collignon P., Beggs J.J. Socioeconomic Enablers for Contagion: Factors Impelling the Antimicrobial Resistance Epidemic. Antibiotics. 2019;8:86. doi: 10.3390/antibiotics8030086. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Stapleton P.D., Taylor P.W. Methicillin Resistance in Staphylococcus Aureus: Mechanisms and Modulation. Sci. Prog. 2002;85:57–72. doi: 10.3184/003685002783238870.[PMC free article] [PubMed] [CrossRef] [Google Scholar] McGuinness W.A., Malachowa N., DeLeo F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017;90:269–281. [PMC free article] [PubMed] [Google Scholar] Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Mulani M.S., Kamble E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019;10:539. doi: 10.3389/fmicb.2019.00539. [PMC free article] [PubMed] [CrossRef] [Google Scholar] De Oliveira D.M.P., Forde B.M., Kidd T.J., Harris P.N.A., Schembri M.A., Beatson S.A., Paterson D.L., Walker M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020;33:181. doi: 10.1128/CMR.00181-19. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Santajit S., Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int. 2016;2016:2475067. doi: 10.1155/2016/2475067. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Breijyeh Z., Jubeh B., Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020;25:1340. doi: 10.3390/molecules25061340. [PMC free article] [PubMed] [CrossRef] [Google Scholar] WHO W.H.O. 10 Threats to Global Health in 2018. [(accessed on 18 December 2020)]. Available online: https://medium.com/@who/10-threats-to-global-health-in-2018-232daf0bbef32018 Abdelaziz S., Aboshanab K., Yahia I., Yassien M., Hassouna N. Correlation between the Antibiotic Resistance Genes and Susceptibility to Antibiotics among the Carbapenem-Resistant Gram-Negative Pathogens. Antibiotics. 2021;10:255. doi: 10.3390/antibiotics10030255. [PMC free article] [PubMed] [CrossRef] [Google Scholar] World Health Organization Ten Threats to Global Health in 2019. [(accessed on 18 December 2020)]. Available online: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019 ECDC Communicable Disease and Threats Report CDTR. [(accessed on 18 December 2020)]; 2019 Available online: www.ecdc.europa.e ECDC Biggest Threats and Data. [(accessed on 18 December 2020)]; Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf2019 Cepas V., Soto S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics. 2020;9:719. doi:10.3390/antibiotics9100719. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Mir Saleem B.D., de la Bastide A., Korzen M. Antibiotics Overuse and Bacterial Resistance. Ann. Microbiol. Res. 2019;3:93-99. [Google Scholar] Iramiot J.S., Kajumbula H., Bazira J., Kansiime C., Asiimwe B.B. Antimicrobial resistance at the human–animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020;10:14737. doi: 10.1038/s41598-020-70517-w. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Malik B., Bhattacharyya S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep. 2019;9:9788. doi: 10.1038/s41598-019-46078-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Reygaert W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4:482–501. doi: 10.3934/microbiol.2018.3.482. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Sandner-Miranda L., Vinuesa P., Cravioto A., Morales-Espinosa R. The Genomic Basis of Intrinsic and Acquired Antibiotic Resistance in the Genus Serratia. Front. Microbiol. 2018;9:828. doi:10.3389/fmicb.2018.00828. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Ben Y., Fu C., Hu M., Liu L., Wong M.H., Zheng C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019;169:483–493. doi: 10.1016/j.envres.2018.11.040. [PubMed] [CrossRef] [Google Scholar] Friedrich A.W. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien. Med. Wochenschr. 2019;169:25–30. doi: 10.1007/s10354-018-0676-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Sun D., Jeannot K., Xiao Y., Knapp C.W. Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front. Microbiol. 2019;10:1933. doi: 10.3389/fmicb.2019.01933. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Benkő R., Gajdács M., Matuz M., Bodó G., Lázár A., Hajdú E., Papfalvi E., Hannauer P., Erdélyi P., Pető Z. Prevalence and Antibiotic Resistance of ESKAPE Pathogens Isolated in the Emergency Department of a Tertiary Care Teaching Hospital in Hungary: A 5-Year Retrospective Survey. Antibiotics. 2020;9:624. doi: 10.3390/antibiotics9090624. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Kapoor G., Saigal S., Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017;33:300–305. doi: 10.4103/joacp.JOACP_349_15. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Schroeder M., Brooks B.D., Brooks A.E. The Complex Relationship between Virulence and Antibiotic Resistance. Genes. 2017;8:39. doi: 10.3390/genes8010039. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Pandey R., Mishra S.K., Shrestha A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Resist. 2021;14:2201–2212. doi: 10.2147/IDR.S306688. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Harding C.M., Hennon S.W., Feldman M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Genet. 2018;16:91–102. doi: 10.1038/nrmicro.2017.148. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Kyriakidis I., Vasileiou E., Pana Z., Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021;10:373. doi: 10.3390/pathogens10030373. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Vrancianu C.O., Gheorghe I., Czobor I.B., Chifiriuc M.C. Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms. 2020;8:935. doi: 10.3390/microorganisms8060935. [PMC free article] [PubMed] [CrossRef] [Google Scholar] |