3

The human microbiome consists of bacteria, archaea, viruses, and eukaryotes that inhabit both the internal and external surfaces of the body. These microorganisms play a significant role in human physiology, influencing health and disease by enhancing or impairing metabolic and immune functions. Different microorganisms colonize various body sites, each adapting to the unique characteristics of its environment. Facultative anaerobes are more common in the gastrointestinal tract, while strict aerobes dominate areas like the respiratory tract, nasal cavity, and skin. The immune system and these indigenous microbes have evolved together, leading to a balanced biological interaction. Disruptions in the gut microbial community, often influenced by lifestyle or underlying diseases, contribute to various health issues. Such dysbiosis increases susceptibility to infections, which vary depending on the affected anatomical site. The diversity of the human microbiota is responsible for the specific metabolic functions at each body site. Thus, understanding the composition and activities of the human microbiome is crucial for insights into its role in health and disease.

  • O'qishlar soni 3
  • Nashr sanasi 01-11-2024
  • Asosiy tilIngliz
  • Sahifalar238-248
English

The human microbiome consists of bacteria, archaea, viruses, and eukaryotes that inhabit both the internal and external surfaces of the body. These microorganisms play a significant role in human physiology, influencing health and disease by enhancing or impairing metabolic and immune functions. Different microorganisms colonize various body sites, each adapting to the unique characteristics of its environment. Facultative anaerobes are more common in the gastrointestinal tract, while strict aerobes dominate areas like the respiratory tract, nasal cavity, and skin. The immune system and these indigenous microbes have evolved together, leading to a balanced biological interaction. Disruptions in the gut microbial community, often influenced by lifestyle or underlying diseases, contribute to various health issues. Such dysbiosis increases susceptibility to infections, which vary depending on the affected anatomical site. The diversity of the human microbiota is responsible for the specific metabolic functions at each body site. Thus, understanding the composition and activities of the human microbiome is crucial for insights into its role in health and disease.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Saidova M.B. Assistant Alfraganus university
Havola nomi
1 Grice E. A., Segre J. A. The skin microbiome. Nature Reviews Microbiology. 2011;9(4):244–253. doi: 10.1038/nrmicro2537. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Whiteside S. A., Razvi H., Dave S., Reid G., Burton J. P. The microbiome of the urinary tract—a role beyond infection. Nature Reviews Urology. 2015;12(2):81–90. doi: 10.1038/nrurol.2014.361. [PubMed] [CrossRef] [Google Scholar] Yilmaz P., Parfrey L. W., Yarza P., et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Research. 2014;42:D643–D648. doi: 10.1093/nar/gkt1209. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Reid T., Schloss P. D. Dynamics and associations of microbial community types across the human body. Nature. 2014;509(7500):357–360. doi: 10.1038/nature13178. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Hoeppli R. E., Wu D., Cook L., Levings M. K. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Frontiers in Immunology. 2015;6:p. 61. doi: 10.3389/fimmu.2015.00061. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Morgan X. C., Huttenhower C. Chapter 12: human microbiome analysis. PLoS Computational Biology. 2012;8:12. doi: 10.1371/journal.pcbi.1002808.e1002808 [PMC free article] [PubMed] [CrossRef] [Google Scholar] Pascal M., Perez-Gordo M., Caballero T., et al. Microbiome and allergic diseases. Frontiers in Immunology. 2018;9:p. 1584. doi: 10.3389/fimmu.2018.01584. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Elizabeth T., Nathalie J. Introduction to the human gut microbiota. Biochemical Journal. 2017;474(11):1823–1836. doi: 10.1042/BCJ20160510. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Manrique P., Bolduc B., Walk S. T., van der Oost J., de Vos W. M., Young M. J. Healthy human gut phageome. PNAS. 2016;113(37):10400–10405. doi: 10.1073/pnas.1601060113. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Round J. L., Mazmanian S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology. 2009;9(5):313–323. doi: 10.1038/nri2515. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Urbaniak C., Gloor G. B., Brackstone M., Scott L., Tangney M., Reid G. The microbiota of breast tissue and its association with breast cancer. Applied and Environmental Microbiology. 2011;82(16):5039–5048. doi: 10.1128/AEM.01235-16. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Ipci K., Altıntoprak N., Muluk N. B., Senturk M., Cingi C. The possible mechanisms of the human microbiome in allergic diseases. European Archives of Oto-Rhino-Laryngology. 2016;274(2):617–626. doi: 10.1007/s00405-016-4058-6. [PubMed] [CrossRef] [Google Scholar] Rojo D., Méndez-García C., Raczkowska B. A., et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiology Reviews. 2017;41(4):453–478. doi: 10.1093/femsre/fuw046. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Sunil T., Jacques I., Emily W., et al. The host microbiome regulates and maintains human health: a primer and perspective for non-microbiologists. Cancer Research. 2017;77(8):1783–1812. doi: 10.1158/0008-5472.can-16-2929. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Anderson J. M., Van Itallie C. M. Physiology and function of the tight junction. Cold Spring Harbor Perspectives in Biology. 2009;1(2):p. 25. doi: 10.1101/cshperspect.a002584. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Tang W. H. W., Wang Z., Kennedy D. J., et al. Gut microbiota-dependent TrimethylamineN-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circulation Research. 2015;116(3):448–455. doi: 10.1161/circresaha.116.305360. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Kho Z. Y., Lal S. K. The human gut microbiome-a potential controller of wellness and disease. Frontiers in Microbiology. 2018;9:p. 1835. doi: 10.3389/fmicb.2018.01835. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):p. 14. doi: 10.1186/s40168-016-0222-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Parfrey L. W., Walters W. A., Lauber C. L., et al. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in Microbiology. 2014;5:p. 298. doi: 10.3389/fmicb.2014.00298. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Segal L. N., Blaser M. J. A brave new world: the lung microbiota in an era of change. Annals of the American Thoracic Society. 2014;11(1):21–27. doi: 10.1513/AnnalsATS.201306-189M10.1513/annalsats.201306-189mg. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Renz H., Brandtzaeg P., Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammationflammation. Nature Reviews Immunology. 2012;12(1):9–23. doi: 10.1038/nri3112. [PubMed] [CrossRef] [Google Scholar] Cingi C., Muluk N. B., Scadding G. K. Will every child have allergic rhinitis soon? International Journal of Pediatric Otorhinolaryngology. 2019;118:53–58. doi: 10.1016/j.ijporl.2018.12.019. [PubMed] [CrossRef] [Google Scholar] Chiu C.-Y., Chan Y.-L., Tsai M.-H., Wang C.-J., Chiang M.-H., Chiu C.-C. Gut microbial dysbiosis is associated with allergen-specific IgE responses in young children with airway allergies. World Allergy Organization Journal. 2019;12(3) doi: 10.1016/j.waojou.2019.100021. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Wise S. K., Lin S. Y., Toskala E. Internat consensus statementon allergy and rhinology:allergic rhinitis. International Forum of Allergy & Rhinology. 2018;8(2):85–107. doi: 10.1002/alr.22070. [PubMed] [CrossRef] [Google Scholar] Huang Y. J., Marsland B. J., Bunyavanich S., et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. Journal of Allergy and Clinical Immunology. 2017;139(4):1099–1110. doi: 10.1016/j.jaci.2017.02.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Melli L. C. F. L., do Carmo-Rodrigues M. S., Araújo-Filho H. B., Solé D., de Morais M. B. Intestinal microbiota and allergic diseases: a systematic review. Allergologia et Immunopathologia. 2016;44(2):177–188. doi: 10.1016/j.aller.2015.01.013. [PubMed] [CrossRef] [Google Scholar] Michael W. Microbial Inheritant of Humans: Their Ecology and Role in Health and Disease. Cambridge, UK: Cambridge University Press; 2005. [Google Scholar] Sokol H., Pigneur B., Watterlot L., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences. 2008;105(43):16731–16736. doi: 10.1073/pnas.0804812105. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Thomas-White K., Brady M., Wolfe A. J., Mueller E. R. The bladder is not sterile: history and current discoveries on the urinary microbiome. Current Bladder Dysfunction Reports. 2016;11(1):18–24. doi: 10.1007/s11884-016-0345-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Zhang D., Chen G., Manwani D., et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525(7570):528–532. doi: 10.1038/nature15367. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Hoffmann C., Dollive S., Grunberg S., et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066019.e66019 [PMC free article] [PubMed] [CrossRef] [Google Scholar] Goodrich J. K., Davenport E. R., Waters J. L., Clark A. G., Ley R. E. Cross-species comparisons of host genetic associations with the microbiome. Science. 2016;352(6285):532–535. doi: 10.1126/science.aad9379. [PMC free article] [PubMed] [CrossRef] [Google Scholar] Monachese M., Burton J. P., Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Applied and Environmental Microbiology. 2012;78(18):6397–6404. doi: 10.1128/aem.01665-12. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Kutilmoqda