120

This article discusses the conditions under which a topological space is metrizable and how this relates to compactness. Key metrization theorems, such as those by Urysohn and Nagata-Smirnov, are examined. The article also explores the role of compactness in metrizable spaces, supported by examples like the Sorgenfrey line and Cantor set. Applications in analysis, computer science, and control theory demonstrate the practical importance of these concepts

  • O'qishlar soni 120
  • Nashr sanasi 10-07-2025
  • Asosiy tilIngliz
  • Sahifalar32-35
English

This article discusses the conditions under which a topological space is metrizable and how this relates to compactness. Key metrization theorems, such as those by Urysohn and Nagata-Smirnov, are examined. The article also explores the role of compactness in metrizable spaces, supported by examples like the Sorgenfrey line and Cantor set. Applications in analysis, computer science, and control theory demonstrate the practical importance of these concepts

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Sabrbaeva E.K. student Mathematics of Karakalpak State University
Havola nomi
1 1.LLESHI POLLOZHANI, F., RASIMI, K., SADIKI, F., & BEXHETI, B. (2022). METRIZABILITY OF TOPOLOGICAL SPACES. Journal of Natural Sciences and Mathematics of UT, 7(13-14), 114-120.2.Shravan, K., Tripathy, B. C., & Pandu, M. (2021). Metrizability of multiset topological spaces. SERIES III-MATEMATICS, INFORMATICS, PHYSICS, 13(2), 683-696.3.Когаловский, С. Р. (2022). О ПРОПЕДЕВТИКЕ КУРСА ТОПОЛОГИИ. InСовременные проблемы и перспективы обучения математике, физике, информатике в школе и вузе (pp. 27-30).4.Савельев, В. М. (2019). ОСОБЕННОСТИ ОБУЧЕНИЯТОПОЛОГИИ ДЛЯ ПОВЫШЕНИЯ КОМПЕТЕНТНОСТИ БУДУЩИХ УЧИТЕЛЕЙ МАТЕМАТИКИ. In Современный учитель дисциплин естественнонаучного цикла (pp. 81-83).5.Юнусов, Г. Г., & Болтаев, Х. Х. (2024). Описание и категорные свойства функтора полуаддитивных функционалов. Монография.-Tашкент:«NIF MSH», 2024.–87 стр.
Kutilmoqda