The article describes the hypothesis of the cyclic surface determined in the Galileo domain, the smallest dimensional pseudo-squid space, which is summarized in the five-dimensional two-indexed pseudo-squidoid space and then on the full cyclic surface. Full-scale surfaces have been proven to be in the four-dimensional pseudo-squidoid phase
Maqolada, Galiley fazosida aniqlangan siklik sirt tushunchasi, besh o’lchovli ikki indeksli psevdoyevklid fazosida umumlashtirilgan, so’ngra to’la siklik sirt mavjud bo’lgan eng kam o’lchovli psevdoyevklid fazosi aniqlangan. To’la siklik sirt to’rt o’lchovli psevdoyevklid fazosida mavjudligi isbotlangan.
В статье, понятие циклической поверхности, определенное в галилеевом пространстве, обобщено для пятимерного псевдоевклидова пространства индекса два, доказал существование полной циклической поверхности в псевдоевклидовых пространствах. Определена размерность наименьше псевдоевклидова пространства, где существует полная циклическая поверхность
The article describes the hypothesis of the cyclic surface determined in the Galileo domain, the smallest dimensional pseudo-squid space, which is summarized in the five-dimensional two-indexed pseudo-squidoid space and then on the full cyclic surface. Full-scale surfaces have been proven to be in the four-dimensional pseudo-squidoid phase
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Sultanov B.M. | ||
2 | Ismailov S.S. |
№ | Havola nomi |
---|---|
1 | Artykbaev A., Sokolov D.D. Geometry "in general" in flat space-time. Tashkent, "Fan", 1991. - 180 p |
2 | E.K Kurbonov. Cyclic surfaces of the Galiei space // UzMZh, 2001, №2, pp.51- 57 |
3 | B.M. Sultans. The existence of a cyclic surface by a given function of complete curvature ”// Bulletin of UzMU, 2017 №2 \ 2, p. 201-204 |
4 | B.A. Rosenfeld Non-Euclidean spaces. M .: Science, 1969.-548 p. |