413

Ushbu maqolada differensial o‘yinlar nazariyasida Gronuoll  
tipidagi  tengsizliklarni  qo‘llanishi  ko‘rilgan.  Bunda  o‘yinchilarning  boshqaruv  funksiyalari, 
geometrik chegaralanishlarni umumlashtiruvchi Gronuoll tipidagi chegaralanishlar uchun chiziqli 
differensial  o‘yinlarda  qochish masalasi  o‘rganiladi.   Bu  yerda  qochish masalasini  yechish  uchun 
qochuvchiga  alohida  strategiya  taklif  etiladi  va  o‘yinchilar  orasidagi  masofani  aniqlovchi 
funksiyaning  xossalari  o‘rganiladi.  Maqolada  Ayzeks,  Petrosyan,  Pshenichniy  va  boshqa 
tadqiqotchilar,  shuningdek mualliflarning avvalgi  ishlari  rivojlantiriladi va kengaytiriladi. Bunda 
qochish masalasini yechish uchun yangi yetarlilik shartlari taklif etiladi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 25-01-2021
  • Read count 405
  • Date of publication 25-01-2021
  • Main LanguageO'zbek
  • Pages26-33
Ўзбек

Ushbu maqolada differensial o‘yinlar nazariyasida Gronuoll  
tipidagi  tengsizliklarni  qo‘llanishi  ko‘rilgan.  Bunda  o‘yinchilarning  boshqaruv  funksiyalari, 
geometrik chegaralanishlarni umumlashtiruvchi Gronuoll tipidagi chegaralanishlar uchun chiziqli 
differensial  o‘yinlarda  qochish masalasi  o‘rganiladi.   Bu  yerda  qochish masalasini  yechish  uchun 
qochuvchiga  alohida  strategiya  taklif  etiladi  va  o‘yinchilar  orasidagi  masofani  aniqlovchi 
funksiyaning  xossalari  o‘rganiladi.  Maqolada  Ayzeks,  Petrosyan,  Pshenichniy  va  boshqa 
tadqiqotchilar,  shuningdek mualliflarning avvalgi  ishlari  rivojlantiriladi va kengaytiriladi. Bunda 
qochish masalasini yechish uchun yangi yetarlilik shartlari taklif etiladi.

Русский

 Основная цель настоящей работы является применение  
неравенства  Грануолла  в  теории  дифференциальных  игр.  Здесь  рассматривается  задача 
убегания  для линейных дифференциальных игр с ограничением типа Грануолла, которое в 
некотором  смысле  обобщает  геометрическое  ограничение  на  управления  игроков.  Для 
решения  задачи   предлагается   специальная стратегия для убегающего игрока и изучается 
функция  определяющая  расстояния между  игроками.  В  настоящей  статье  развиваются 
идеи предложенные в работах Айзекса, Петросяна, Пшеничного и других, а так же авторов. 
Здесь получены новые достаточные условия разрешимости задачи убегания. 

English

The main aim  of  this work  is  to present  some natural applications of Gronwall 
type inequalities in the Differential Games. In the present, the evasion problem is studied in linear 
differential  games when Gronwall  type  constraints  imposed  on  control  functions  of  players. The 
Gronwall  type  constraint  generalizes  geometrical  constraint.  To  solve  the  evasion  problem,  we 
propose a particular strategy for evader and study its structure depending on the parameters. This 
work  develops  and  extends  the  ideas  of  works  of  Isaacs,  Petrosyan,  Pshenichnii  and  other 
researchers,  including  the author. Here  the new sufficient solvability conditions  for evader will be 
proposed.

Author name position Name of organisation
1 Samatov B.T.
2 Soyibboev U.B.
3 Akbarov A.K.
Name of reference
1 Gronwall T.H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math., 1919, 20(2): 293-296.
2 Azamov A.A. About the quality problem for the games of simple pursuit with the restriction, Serdika. Bulgarian math. spisanie, 12, 1986, - P.38-43.
3 Azamov A.A., Samatov B.T. П-Strategy. An Elementary introduction to the Theory of Differential Games. - T.: National Univ. of Uzb., 2000. - 32 p.
4 Azamov A.A., Samatov B.T. The П-Strategy: Analogies and Appli-cations, The Fourth International Conference Game Theory and Management, June 28-30, 2010, St. Petersburg, Russia, Collected papers. - P.33-47.
5 Azamov A., Kuchkarov A.Sh. Generalized 'Lion Man' Game of R. Rado, Contributions to game theori and management. Second International Conference "Game Theory and Management" - St.Petersburg, Graduate School of Manage-ment SPbU. - St.Petersburg, 2009. - Vol.11. - P. 8-20.
6 Azamov A.A., Kuchkarov A.Sh., Samatov B.T. The Relation between Problems of Pursuit, Controllability and Stability in the Large in Linear Systems with Different Types of Constraints, J.Appl.Maths and Mechs. - Elsevier. - Netherlands, 2007. - Vol. 71. - N 2. - P. 229-233.
7 Barton J.C, Elieser C.J. On pursuit curves, J. Austral. Mat. Soc. B. - London, 2000. - Vol. 41.- N 3. - P. 358-371.
8 Borovko P., Rzymowsk W., Stachura A. Evasion from many pursuers in the simple case, J. Math. Anal. And Appl. - 1988. - Vol.135. - N 1. - P. 75-80.
9 Chikrii A.A. Conflict-controlled processes, Boston-London-Dordrecht: Kluwer Academ. Publ., 1997, 424 p.
10 Fleming W. H. The convergence problem for differential games, J. Math. Anal. Appl. - 1961. - N 3. - P. 102-116.
11 A. Friedman. Differential Games, New York: Wiley, 1971, - 350 p.
12 Hajek O. Pursuit Games: An Introduction to the Theory and Appli-cations of Differential Games of Pursuit and Evasion. - NY.:Dove. Pub. 2008. - 288 p.
13 Isaacs R. Differential Games, J. Wiley, New York-London-Sydney, 1965, 384 p.
14 Ibragimov G.I. Collective pursuit with integral constrains on the controls of players, Siberian Advances in Mathematics, 2004, v.14, No.2, - P.13-26.
15 Ibragimov G.I., Azamov A.A., Khakestari M. Solution of a linear pursuit-evasion game with integral constraints, ANZIAM Journal. Electronic Supplement. - 2010. - Vol.52. - P. E59-E75.
16 Krasovskii A.N., Choi Y.S. Stochastic Control with the Leaders-Stabilizers. - Ekaterinburg: IMM Ural Branch of RAS, 2001. - 51 p.
17 Krasovskii A.N., Krasovskii N.N. Control under Lack of Information. - Berlin etc.: Birkhauser, 1995. – 322, p.
18 Kuchkarov A.Sh. Solution of Simple Pursuit-Evasion Problem When Evader Moves on a Given Curve, International Game Theory Review. - World Scientific Publishing Company, 2010. - Vol.12. - N 3, - P. 223-238.
19 Miller B., Rubinovich E.Y. Impulsive Control in Continuous and Discrete-Continuous Systems. - N.Y.: Kluwer Academic/Plenum Publishers, 2003. - 447 p.
20 Nahin P.J. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton, 2012, - 260.
21 Petrosyan L.A. About some of the family differential games at a survival in the space n R , Dokl. Akad. Nauk SSSR, 1965, 161, No1, -P.52-54.
22 Petrosyan L.A. The Differential Games of pursuit, Leningrad, LSU, 1977, - 224 p.
23 Petrosyan L.A., Rixsiev B.B. Presledovanie na ploskosti [Pursuit on the plane], Nauka, Moscow, 1991, - 96 p.
24 Pontryagin L.S. Lineyniy differentsialnie igri presledovaniya ["Linear Differential Pursuit Games"], Math. Sb. [Math. USSR-Sb], 112, No.3, -P.307-330.
25 Pshenichnii B.N. The simple pursuit with some objects, Cybernetics, 1976, No.3, -P.145- 146.
26 Rikhsiev B.B. The differential games with simple motions, Tashkent: Fan, 1989, - 232 p.
Waiting