391

In this paper, we have considered a Tricomi type problem for mixed type equation with Hilfer’s double order derivative sub-diffusion equation and classical wave equation in a composite domain. Main methods of the investigation are a method of integral equations and energy integrals’ method.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 15-08-2022
  • Read count 0
  • Date of publication 28-08-2019
  • Main LanguageRus
  • Pages10-14
Ўзбек

Мақолада икки тартибли Хилфер ҳосилали суб-диффузия ва классик тўлқин тенгламасида иборат аралаш типдаги тенглама учун Трикоми типидаги масала аралаш соҳада ўрганилган. Асосий қўлланилган усуллар интеграл тенгламалар ва энергия интеграллари усулларидир.

Русский

In this paper, we have considered a Tricomi type problem for mixed type equation with Hilfer’s double order derivative sub-diffusion equation and classical wave equation in a composite domain. Main methods of the investigation are a method of integral equations and energy integrals’ method.

English

В статье рассмотрена задача типа Трикоми для уравнения смешанного типа с уравнением суб- диффузии и волновым уравнением. Основными методами являются метод интегральных уравнений и метод интегралов энергии.
 

Name of reference
1 1. Uchaikin V. V. Fractional Derivatives for Physicists and Engineers. Vol. I: Background and Theory. Vol. II: Applications. Nonlinear Physical Science. Heidelberg: Springer and Higher Education Press, 2012.
2 2. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, volume 204. North-Holland Mathematics Studies. -Amsterdam: Elsevier, 2006.
3 3. Luchko Y., Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica, 24, 1999, pp.207- 233.
4 4. Sandev T., Metzler R., Tomovski Z. Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative. J. Phys. A: Math. Theor. 44, 2011, 255203 (21pp)
5 5. Pskhu A. V. Partial Differential Equations of Fractional Order (In Russian). Moscow: Nauka, 2005.
6 6. Gekkieva S. Kh. A boundary value problem for the generalized transfer equation with a fractional derivative in a semi-infinite domain (In Russian). Izv. Kabardino-Balkarsk. Nauchnogo Tsentra RAN 1(8), 2002, pp.6-8.
7 7. Kilbas A. A., Repin O. A. An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative. Fract. Calc. Appl. Anal. 13(1), 2010, p.69-84
8 8. Berdyshev A. S., Cabada A., Karimov E. T. On a non-local boundary problem for a parabolic-hyperbolic equation involving Riemann-Liouville fractional differential operator. Nonlinear Analysis, 75, 2012, pp.3268-3273.
9 9. Agarwal P., Berdyshev A. S., Karimov E. T. Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results in Mathematics. 71(3), 2017, pp. 1235-1257
10 10. Karimov E. T., Berdyshev A. S., Rakhmatullaeva N. A. Unique solvability of a non-local problem for mixed-type equation with fractional derivative. Mathematical Methods in the Applied Sciences. 40(8), 2017, pp.2994-2999
11 11. Hilfer R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000.
12 12. Hilfer R., Luchko Y., Tomovski ˇZ. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 12(3), 2009, pp.299-318
13 13. Bulavitsky V.M. Closed form of the solutions of some boundary-value problems for anomalous diffusion equation with Hilfer’s generalized derivative. Cybernetics and Systems Analysis, Vol.30, No 4, 2014, 570-577.
14 14. Karimov E.T. Tricomi type boundary value problem with integral conjugation condition for a mixed type equation with Hilfer fractional operator. Bulletin of the Institute of Mathematics, No 1, 2019, 19-26.
Waiting