В этой статье рассматривается новая взаимосвязь между гипергеометрической функцией Аппеля
(
)
1 1 2
F a;b ,b ;c; x, y и функцией Кампе де Фериет F44;3;4,3,4 [x, y] . Рассмотрено метод разложение на ряд гипергеометрической функции Аппеля, а также использовано метод группировки членов равномерно сходящегося степенного ряда. Из полученного соотношения получено, что существуют связь между функциями Гаусса, обобщенной гипергеометрической функцией 8 F7(x4) и гиперболическими косинусами.
Мақолада Аппелнинг ( )
1 1 2
F a;b ,b ;c; x, y гипергеометрик функцияси ва Кампе де Фериетнинг F44;3;4,3,4 [x, y] функцияси орасидаги янги муносабат олинган. Бунда Аппелнинг гипергеометрик функциясининг қаторга ёйилмасидан ҳамда текис яқинлашувчи даражали қаторларнинг ҳадларини группалаш усулидан фойдаланилган. Олинган муносабатдан Гаусс функциялари, умумлашган гипергеометрик 8 F7(x4) функция ва гиперболик косинуслар ўртасидаги боғланишлар мавжудлиги аниқланган.
В этой статье рассматривается новая взаимосвязь между гипергеометрической функцией Аппеля
(
)
1 1 2
F a;b ,b ;c; x, y и функцией Кампе де Фериет F44;3;4,3,4 [x, y] . Рассмотрено метод разложение на ряд гипергеометрической функции Аппеля, а также использовано метод группировки членов равномерно сходящегося степенного ряда. Из полученного соотношения получено, что существуют связь между функциями Гаусса, обобщенной гипергеометрической функцией 8 F7(x4) и гиперболическими косинусами.
In this paper, we get a new relationship between Appel’s hypergeometric function F1 (a;b1,b2;c; x, y) and Campe de Feriet’s function 4;4,4 [ ]
4;3,3
F x, y . We use expansion of series Appel's hypergeometric function and the method of grouping terms of smooth convergent power series. We find connections between Gaussian functions, generalized hypergeometric function 4
8 7
F (x ) and hyperbolic cosines by using new relationship.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Xasanov A.. | 1 | Namangan state university |
2 | Tolasheva Y.I. | 2 | Namangan state university |
№ | Name of reference |
---|---|
1 | 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, 55, National Bureau of Standards, Washington, D. C., 1964; Reprinted by Dover Publications, New York, 1965. |
2 | 2. A. Altin, Some expansion formulas for a class of singular partial differential equations, Proc. Amer. Math. Soc., 85(1)(1982), 42-46. |
3 | 3. P. Appell and J. Kampeґ de Feґriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d’Hermite, Gauthier - Villars, Paris, 1926. |
4 | 4. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Duke Math. J., 98(3)(1999), 465-483. |
5 | 5. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator II, Duke Math. J., 111(3)(2002), 561-584. |
6 | 6. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator III, Duke Math. J., 128(1)(2005), 119-140. |
7 | 7. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958. |
8 | 8. B. C. Carlson, Some extensions of Lardner’s relations between 0F3 and Bessel functions, SIAM J. Math. Anal., 1(2)(1970), 232-242. |
9 | 9. A. Erdeґlyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw- Hill Book Company, New York, Toronto and London, 1953. |
10 | 10. A. Erdeґlyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw- Hill Book Company, New York, Toronto and London, 1953. |
11 | 11. F. I. Frankl, Selected Works in Gas Dynamics. Nauka, Moscow 1973. |
12 | 12. A. J. Fryant, Growth and complete sequences of generalized bi-axially symmetric potentials, J. Diff. Equa., 31(2)(1979), 155-164. |
13 | 13. A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8)(2007), 673-683. |
14 | 14. A. Hasanov, Some solutions of generalized Rassias’s equation, Intern. J. Appl. Math.Stat., 8(M07), (2007), 20- 30. |
15 | 15. A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration, Intern. J. Appl. Math. Stat., 13(8)(2008), 41-49. |
16 | 16. A. Hasanov and E. T. Karimov, Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients, Appl. Math. Lett., 22(2009),1828-1832. |
17 | 17. A. Hasanov, J. M. Rassias and M. Turaev, Fundamental solution for the generalized Elliptic Gellerstedt Equation, Book: Functional Equations, Difference Inequalities and ULAM Stability Notions, Nova Science Publishers Inc. NY, USA, 6(2010), 73-83. |
18 | 18. A. Hasanov and H. M. Srivastava, Some decomposition formulas associated with the Lauricella Function and other multiple hypergeometric functions, Appl. Math. Lett.,19(2006), 113-121. |
19 | 19. A. Hasanov and H. M. Srivastava, Decomposition formulas associated with the Lauricella multivariable hypergeometric functions, Comput. Math. Appl., 53(7)(2007),1119-1128. |
20 | 20. A. Hasanov, H. M. Srivastava, and M. Turaev, Decomposition formulas for some triple hypergeometric functions, J. Math. Anal. Appl., 324(2006), 955-969. |
21 | 21. A. Hasanov and M. Turaev, Decomposition formulas for the double hypergeometric G1 and G2 Hypergeometric functions, Appl. Math. Comput., 187(1)(2007), 195-201. |
22 | 22. Y. S. Kim, A. K. Rathie and J. Choi, Note on Srivastava’s triple hypergeometric series HA, Commun. Korean Math. Soc., 18(3)(2003), 581-586. |
23 | 23. T. J. Lardner, Relations between 0F3 and Bessel functions, SIAM Review, 11(1969), 69-72. |
24 | 24. T. J. Lardner and C. R. Steele, Symmetric deformations of circular cylindrical elastic shells of exponentially varying thickness, Trans. ASME Ser. E. J. Appl. Mech.,35(1968), 169-170. |
25 | 25. G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Absorbedpower. SIAM J. Appl. Math., 49(1989), 567-581. |
26 | 26. P. A. McCoy, Polynomial approximation and growth of generalized axisymmetric potentials, Canad. J. Math., 31(1)(1979), 49-59. |
27 | 27. A. W. Niukkanen, Generalized hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen., 16(1983), 1813-1825. |
28 | 28. A. K. Rathie and Y. S. Kim, Further results on Srivastava’s triple hypergeometric series HA and HC, Ind. J. Pure Appl. Math., 35(8), (2004), 991-1002. |
29 | 29. M. S. Salakhitdinov and A. Hasanov, A solution of the Neumann-Dirichlet boundary value problem for generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations, 53(4)(2008), 355-364. |
30 | 30. H. M. Srivastava, Hypergeometric functions of three variables, Ganita, 15(2)(1964), 97-108. |
31 | 31. H. M. Srivastava, Some integrals representing hypergeometric functions, Rend. Circ. Mat. Palermo, 16(2)(1967), 99-115. |
32 | 32. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001. |
33 | 33. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press(Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985. |
34 | 34. M. Turaev, Decomposition formulas for Srivastava’s hypergeometric function on Saran functions, Comput. Appl. Math., 233(2009), 842-846. |
35 | 35. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd Edi., Cambridge University Press, Cambridge, London and New York, 1944. |
36 | 36. A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer.Math. Soc., 63(1946), 342- 354. |
37 | 37. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc.,59(1953), 20-38. |
38 | 38. R. J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Diff.Equa., 3(1964), 43-55. |