35

Global iqlim o‘zgarishi natijasida mintaqadagi muzliklar erib, so‘nggi 50–60 yil davomida 30 foizga qisqargan. Tahlillar iqlim o‘zgarishi O‘zbekistonda suv taqchilligini yanada keskinlashtirishi, 2000-, 2008-, 2011- , 2014- va 2018-yillardagi kabi qurg‘oqchilikning davomiyligi va davriyligi ko‘payishiga olib kelishi hamda iqtisodiyotning suv resurslariga bo‘lgan ehtiyojini qondirishda jiddiy muammolar keltirib chiqarishi mumkinligini ko‘rsatmoqda. Ma’lumki, suv omborlarida bo‘ladigan bug‘lanish bir nechta omillarga bog‘liq. Maksimal suv hajmining yig‘ilgandagi vaqti havo haroratining ko‘tarilgan vaqtiga to‘g‘ri kelishi maksimal bug‘lanish bo‘lib, bu suv ombori gidrologik ish rejimi o‘zgarishiga olib kelmoqda. Havo haroratining keskin ko‘tarilishi hamda shamol ta’sirini inobatga olib, 2018-yil va 2022-yillar davomida yilning aprel, may va iyun oylaridagi bug‘lanish jarayoni o‘rganildi. Tadqiqotlarni olib borishda tabiiy dala kuzatuv va o‘lchov ma’lumotlari hamda empirik formulalar orqali aniqlangan. Suv ombori kosasidan bo‘layotgan bug‘lanish suv sathi, havo harorati va shamol tezligiga bog‘liq holatda turli oylarda har xil natija ko‘rsatdi. B.D. Zaykov formulasi natijalariga ko‘ra, suv sathi yuqori ko‘rsatkichlarda bo‘lgan aprel oyida o‘rtacha bug‘lanish miqdori E0 = 159,7 mm dan E0 = 168 mm gacha, A.Z. Braslavskiy va P.A. Vikulina formulalari natijalarida esa bu ko‘rsatkich Ev= 225,8 mm dan Ev = 243,6 mm gacha ortib bordi. Tahlillar yildan yilga suv omborlaridagi bug‘lanish miqdori ortib borayotgani, bu esa suv omborlarining gidrologik ish rejimi o‘zgarishiga olib kelishini ko‘rsatmoqda. Tadqiqotlarda bug‘lanish miqdori ortishiga, asosan, havo haroratining ko‘tarilishi sabab bo‘layotgani aniqlandi.

  • Web Address
  • DOIhttps://dx.doi.org/10.36522/2181-9637-2024-1-9
  • Date of creation in the UzSCI system 11-10-2024
  • Read count 35
  • Date of publication 08-02-2024
  • Main LanguageO'zbek
  • Pages94-104
Ўзбек

Global iqlim o‘zgarishi natijasida mintaqadagi muzliklar erib, so‘nggi 50–60 yil davomida 30 foizga qisqargan. Tahlillar iqlim o‘zgarishi O‘zbekistonda suv taqchilligini yanada keskinlashtirishi, 2000-, 2008-, 2011- , 2014- va 2018-yillardagi kabi qurg‘oqchilikning davomiyligi va davriyligi ko‘payishiga olib kelishi hamda iqtisodiyotning suv resurslariga bo‘lgan ehtiyojini qondirishda jiddiy muammolar keltirib chiqarishi mumkinligini ko‘rsatmoqda. Ma’lumki, suv omborlarida bo‘ladigan bug‘lanish bir nechta omillarga bog‘liq. Maksimal suv hajmining yig‘ilgandagi vaqti havo haroratining ko‘tarilgan vaqtiga to‘g‘ri kelishi maksimal bug‘lanish bo‘lib, bu suv ombori gidrologik ish rejimi o‘zgarishiga olib kelmoqda. Havo haroratining keskin ko‘tarilishi hamda shamol ta’sirini inobatga olib, 2018-yil va 2022-yillar davomida yilning aprel, may va iyun oylaridagi bug‘lanish jarayoni o‘rganildi. Tadqiqotlarni olib borishda tabiiy dala kuzatuv va o‘lchov ma’lumotlari hamda empirik formulalar orqali aniqlangan. Suv ombori kosasidan bo‘layotgan bug‘lanish suv sathi, havo harorati va shamol tezligiga bog‘liq holatda turli oylarda har xil natija ko‘rsatdi. B.D. Zaykov formulasi natijalariga ko‘ra, suv sathi yuqori ko‘rsatkichlarda bo‘lgan aprel oyida o‘rtacha bug‘lanish miqdori E0 = 159,7 mm dan E0 = 168 mm gacha, A.Z. Braslavskiy va P.A. Vikulina formulalari natijalarida esa bu ko‘rsatkich Ev= 225,8 mm dan Ev = 243,6 mm gacha ortib bordi. Tahlillar yildan yilga suv omborlaridagi bug‘lanish miqdori ortib borayotgani, bu esa suv omborlarining gidrologik ish rejimi o‘zgarishiga olib kelishini ko‘rsatmoqda. Tadqiqotlarda bug‘lanish miqdori ortishiga, asosan, havo haroratining ko‘tarilishi sabab bo‘layotgani aniqlandi.

Русский

В результате глобального изменения климата за последние 50-60 лет в регионе ледники растаяли и уменьшились на 30 %. Анализ показывает, что изменение климата усугубит дефицит воды в Узбекистане: увеличит продолжительность и периодичность засухи, как это было в 2000, 2008, 2011, 2014 и 2018 годы, и может вызвать серьёзные проблемы в удовлетворении потребности экономики в водных ресурсах. Известно, что испарение в водохранилищах зависит от нескольких факторов, причём время испарения максимального объёма воды совпадает со временем повышения температуры воздуха до максимального значения, это означает, что в водохранилище происходит изменение гидрологического режима. С учётом резкого повышения температуры воздуха и влияния ветра изучен процесс испарения в апреле, мае и июне 2018 и 2022 годов. В ходе исследований природное поле определялось по данным наблюдений и измерений и эмпирическим формулам. Испарение из чаши водохранилища в разные месяцы показало разные результаты в зависимости от уровня воды, температуры воздуха и скорости ветра. По результатам вычислений по формуле Б.Д. Зайкова, в апреле при высоком уровне воды средняя величина испарения увеличилась с Е0 = 159,7 мм до Е0 = 168 мм. По результатам вычислений по формуле А.З. Браславского и П.А. Викулиной, этот показатель увеличился с Ev= 225,8 мм до Ev= 243,6 мм. Анализ показывает, что количество испарения в водохранилищах увеличивается из года в год, что является причиной изменения гидрологического режима водохранилищ. Исследования показывают, что увеличение количества испарения вызвано главным образом повышением температуры воздуха.

English

The article presents a review of studies into the process of evaporation from a reservoir bowl and its calculation, which is considered as one of the elements that greatly affects water balance in reservoirs. Reservoirs play an important role in water resource management, however losses of water from a reservoir create uncertainties in water accounting. Therefore, effective management of water resources as well as accurate calculation of the amount of water lost through evaporation, taking into account parameters of the object and climatic conditions, is deemed to be one of the urgent tasks nowadays. It is known that evaporation in reservoirs depends on several factors: maximum volume of water and its area, air temperature, wind speed in a given area and the number of plants in the reservoir bowl. Taking into account a sharp increase in the air temperature and the effects of wind, the evaporation process was subject for studies in April, May and June in 2018 and 2022. The research made use of the data retrieved from field observations and measurements, as well as of empirical formulas proposed by scientists B.D. Zaikov, A.Z. Braslavsky and P.A. Vikulina. According to calculations made with B.D. Zaikov’s formula, in April, at high water levels, the average amount of evaporation increased from E0 = 159.7 mm to E0 = 168 mm. According to findings achieved with formulas by A.Z. Braslavsky and P.A. Vikulina, this indicator increased from Ev = 225.8 mm to Ev = 243.6 mm. Analyzes have shown that the amount of evaporation in reservoirs keeps growing from year to year, which causes a change in the hydrological regime of reservoirs. The research concluded that increased evaporation is being caused by changing climatic conditions and rising air temperatures.

Author name position Name of organisation
1 Xoshimov S.N. texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqotlar universiteti
Name of reference
1 “Toshkent irrigatsiya va qishloq xo‘jaligini mexanizatsiyalash muhandislari instituti” Milliy tadqiqotlar universiteti
2 Alexakis, D., Hadjimitsis, D., & Agapiou, A. (2013). Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmospheric Research, 131, 108-124.
3 Arifjanov, A., Gapparov, F., Apakxujaeva, T., & Xoshimov, S. (2020). Determination of reduction of useful volume in water reservoirs due to sedimentation. IOP Conference Series: Earth and Environmental Science, 614(1), 012079.
4 Arifjanov, A., Jurayev, S., Qosimov, T., Xoshimov, S., & Abdulkhaev, Z. (2023). Investigation of the interaction of hydraulic parameters of the channel in the filtration process. Proceedings of the E3S Web of Conferences (CONMECHYDRO - 2023), 401, 03074. doi:10.1051/e3sconf/202340103074
5 Arifjanov, A., Samiev, L., Khaydarov, S., Kasimov, T., & Juraev, S. (2022). Increasing Efficient Use of Water Storage Pools. AIP Conference Proceedings, 2432, 040003.
6 Arifjanov, A., Samiyev, L., Ibragimova, Z, & Ulashov, Q. (2023). Effects of water level changes in reservoir basin on coastal erosion. Construction Mechanics, Hydraulics and Water Resources Engineering. Proceedings of the V International Scientific Conference (CONMECHYDRO - 2023).
7 Bedritsky, A. (2008). Assessment report on climate change and its consequences on the territory of the Russian Federation (28 p.). Moscow.
8 Braslavski, A., Vikulina, Z., Chebotarev, A. (ed.) (1963). Evaporation Norms from Water Reservoirs. Sivan Press.
9 Du, Ji., Wu, X., Wang, Z., Li, J., & Chen, X. (2020). Reservoir-Induced Hydrological Alterations Using Ecologically Related Hydrologic Metrics: Case Study in the Beijiang River, China. Water, 12(7). doi:10.3390/ w12072008
10 Gao, B., Li, J., & Wang, X. (2018). Analyzing changes in the flow regime of the Yangtze River using the ecoflow metrics and IHA metrics. Water, 10, 1552.
11 Gapparov, F., Kodirov, S., & Mansurov, S. (2019). The evaporation loss from water reservoirs of Uzbekistan. Proceedings of the E3S Web of Conferences (FORM-2019), 97, 05027. doi:10.1051/e3sconf/20199705027
12 Grechushnikova, M., Puklakova, N., & Edelstein, K. (n.d.). Possible change in the hydrological regime of the Tsimlyanskoye reservoir under climate warming. Geography and Ecology.
13 Jurík, Ľ., Zeleňáková, M., Kaletová, T., & Arifjanov, A. (2019). Small water reservoirs: sources of water for irrigation: Handbook of Environmental Chemistry, 69, 115-131.
14 Poddubnyi, S., Zakonnova, A., Tsvetkov, A. (2023). Current Hydrological Regime of the Volga Reservoirs. Water Resources and the Regime of Water Bodies. Water Resources, 50(3), 345-357. ISSN 0097-8078
15 Samiev, L., Khamidov, A., Ungalov, A., & Mamatisaev, G. (2023). Hydrological analysis of livestock water reservoir using GIS technologies. Proceedings of the E3S Web of Conferences, 371, 01030.
16 Samiev, L., Rakhimov, Q., Ibragimova, Z., & Allayorov, D. (2021). To the determination of non-washable speed in the channels bed consisting of disconnected soils. Proceedings of the E3S Web of Conferences, 264. doi:10.1051/e3sconf/202126403011
17 Samiyev, L., Allayorov, D., Atakulov, D., & Babajanov, F. (2020). The influence of sedimentation reservoir on hydraulic parameters of irrigation channels. Proceedings of the IOP Conference Series: Materials Science and Engineering.
18 Warner, R.F. (2012). Environmental impacts of hydroelectric power and other anthropogenic developments on the hydromorphology and ecology of the Durance channel and the Etang de Berre, southeast France. Environ. Manag., 104, 35-50.
19 Xoshimov, S., Atakulov, D., Yalgashev, O., Komilov, S., & Boykulov, J. (2023). Evaluation of sedimentation of water reservoirs with modern technologies. Proceedings of the E3S Web of Conferences, 365, 03033.
20 Zaikov, B.D. (1946). Average runoff and its distribution in a year on the territory of the USSR. Proceedings of the Research Institute of State Hydrometeorology and Geophysics (Ser. IV), 24, 148.
21 Zhang, Q., Zhang, Z., Shi, P., Singh, V., & Gu, X. (2017). Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Chang, 160, 61-74.
Waiting