O‘zgaruvchan ob-havo sharoitida ishlaydigan bilvosita quyosh quritgichlarida mahsulotlarni quritish jarayoni murakkab nochiziqli tizim hisoblanadi. Ushbu turdagi quritgichlar samaradorligini aniqlash, tahlil qilish va kelgusidagi ish faoliyatini bashorat qilish uchun tizimni modellashtirish dolzarbdir. Modellashtirish quritish jarayonining murakkab dinamikasini hisobga olgan holda, optimallashtirishga yordam beradi. Quritish kamerasidagi haroratni bashorat qilish quritish jarayoni samaradorligini oshirish va mahsulot sifatini yaxshilashda muhim ahamiyat kasb etadi. Haroratni nazorat qilish mahsulotning namlik darajasini samarali kamaytirish bilan birga uning oziqaviy xususiyatlarini maksimal darajada saqlash imkonini beradi. Shu sababli harorat qiymatlarini oldindan aniq bashorat qilish quritish jarayonida mahsulot sifatini yaxshilash va jarayonni yanada samarali qilish uchun zaruriy shartdir. Ushbu maqolada turli ob-havo sharoitlari uchun o‘rganilgan quritgichda bir qator eksperimental tajribalar o‘tkazilib, uning statik va dinamik xususiyatlari o‘rganildi. Tajriba natijalari asosida Mamdani usulidan foydalangan holda, tegishlilik funksiyalari shakllantirilgan va xulosa chiqarish mexanizmining qoidalar bazasi ishlab chiqilgan. Mamdani algoritmi modeli o‘qitilganda, quyosh radiatsiyasi 700 W/m² va tashqi muhit harorat 46 °C bo‘lganda, quritish kamerasidagi harorat 50,9°C hamda quyosh radiatsiyasi 750 W/m² ga tenglashganda, tashqi harorat 50 °C atrofida bo‘lganda, quritish kamerasidagi harorat 52 °C ga teng bo‘lishi aniq bashorat qilindi. Bu esa tajriba natijalari bilan to‘liq mos keladi. Taklif etilayotgan modelning aniqligi o‘rtacha kvadratik xatolik (RMSE) 0,38 °C, o‘rtacha kvadratik xatolik foizi (RMSE %) 0,82 % ekanligini ko‘rsatdi. Bu usul orqali kelajakda quyosh quritgichlarining avtomatik rostlash tizimlarini yaratish va quritish texnologiyalarini takomillashtirish imkoniyati oshadi.
O‘zgaruvchan ob-havo sharoitida ishlaydigan bilvosita quyosh quritgichlarida mahsulotlarni quritish jarayoni murakkab nochiziqli tizim hisoblanadi. Ushbu turdagi quritgichlar samaradorligini aniqlash, tahlil qilish va kelgusidagi ish faoliyatini bashorat qilish uchun tizimni modellashtirish dolzarbdir. Modellashtirish quritish jarayonining murakkab dinamikasini hisobga olgan holda, optimallashtirishga yordam beradi. Quritish kamerasidagi haroratni bashorat qilish quritish jarayoni samaradorligini oshirish va mahsulot sifatini yaxshilashda muhim ahamiyat kasb etadi. Haroratni nazorat qilish mahsulotning namlik darajasini samarali kamaytirish bilan birga uning oziqaviy xususiyatlarini maksimal darajada saqlash imkonini beradi. Shu sababli harorat qiymatlarini oldindan aniq bashorat qilish quritish jarayonida mahsulot sifatini yaxshilash va jarayonni yanada samarali qilish uchun zaruriy shartdir. Ushbu maqolada turli ob-havo sharoitlari uchun o‘rganilgan quritgichda bir qator eksperimental tajribalar o‘tkazilib, uning statik va dinamik xususiyatlari o‘rganildi. Tajriba natijalari asosida Mamdani usulidan foydalangan holda, tegishlilik funksiyalari shakllantirilgan va xulosa chiqarish mexanizmining qoidalar bazasi ishlab chiqilgan. Mamdani algoritmi modeli o‘qitilganda, quyosh radiatsiyasi 700 W/m² va tashqi muhit harorat 46 °C bo‘lganda, quritish kamerasidagi harorat 50,9°C hamda quyosh radiatsiyasi 750 W/m² ga tenglashganda, tashqi harorat 50 °C atrofida bo‘lganda, quritish kamerasidagi harorat 52 °C ga teng bo‘lishi aniq bashorat qilindi. Bu esa tajriba natijalari bilan to‘liq mos keladi. Taklif etilayotgan modelning aniqligi o‘rtacha kvadratik xatolik (RMSE) 0,38 °C, o‘rtacha kvadratik xatolik foizi (RMSE %) 0,82 % ekanligini ko‘rsatdi. Bu usul orqali kelajakda quyosh quritgichlarining avtomatik rostlash tizimlarini yaratish va quritish texnologiyalarini takomillashtirish imkoniyati oshadi.
Процесс сушки продуктов в косвенных солнечных сушилках, работающих в условиях изменяющихся погодных условий, представляет собой сложную нелинейную систему. Моделирование таких систем имеет важное значение для определения их эффективности, анализа и прогнозирования работы сушилок в будущем. Моделирование помогает оптимизировать процесс сушки, учитывая сложную динамику системы. Прогнозирование динамики температуры в камере сушилки играет важную роль в повышении эффективности процесса сушки и улучшении качества продукции. Контроль температуры позволяет максимально сохранить питательные свойства продукта, эффективно снижая уровень его влажности. По этой причине предварительное точное прогнозирование температурных значений является необходимым условием для улучшения качества продукта в процессе сушки и повышения эффективности процесса. В этой статье был проведён ряд экспериментов на косвенной сушилке для различных погодных условий, изучены её статические и динамические свойства. На основе результатов эксперимента с использованием метода Мамдани были сформированы относительная функция и разработана база правил механизма вывода. При обучении модели по алгоритму Мамдани было точно спрогнозировано, что при солнечной радиации 700 W/м² и температуре окружающей среды 46 °C температура в камере сушки составит 50,9 °C, а при солнечной радиации 750 W/м² и температуре окружающей среды около 50 °C температура в камере достигнет 52 °C, что полностью соответствует экспериментальным данным. Точность предлагаемой модели показала, что среднеквадратичная ошибка (RMSE) составила 0,38 °C, а процент среднеквадратичной ошибки (RMSE %) – 0,82 %. Этот метод открывает возможности для создания автоматических систем регулирования в солнечных сушилках и совершенствования технологий сушки в будущем.
The drying process in indirect solar dryers operating under changing weather conditions represents a complex nonlinear system. Modeling these types of dryers is essential for determining their efficiency, analyzing performance, and predicting future operations. Modeling helps optimize the drying process by accounting for the complex dynamics involved. Predicting the temperature in the drying chamber is considered crucial for improving the efficiency of the drying process and enhancing product quality. Temperature control enables effective reduction of product moisture while preserving its nutritional properties. Therefore, accurate forecasting of temperature values in advance is a required prerequisite for improving the quality of the product during the drying process and increasing its overall efficiency. In this article, a series of experimental tests were conducted on the dryer under various weather conditions, and its static and dynamic characteristics were examined. Based on the experimental findings, membership functions were formed using the Mamdani method, and a rule base for the inference mechanism was developed. When the Mamdani algorithm model was trained, it was accurately predicted that with solar radiation at 700 W/m² and ambient temperature at 46 °C, the drying chamber temperature would be 50.9 °C. Similarly, when solar radiation was 750 W/m² and the ambient temperature was around 50 °C, the drying chamber temperature would reach 52 °C, which fully corresponds to the experimental results. Accuracy of the proposed model demonstrated that the root mean square error (RMSE) was 0.38 °C, and the percentage of the root mean square error (RMSE %) was 0.82 %. This method paves the way for the future development of automatic control systems for solar dryers and further advancements in drying technologies.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Usmanov . . | “Avtomatlashtirish va raqamli boshqaruv” kafedrasi mudiri | Toshkent kimyo-texnologiya instituti |
2 | Rejabov S.A. | tayanch doktorant | Toshkent kimyo-texnologiya instituti |
3 | Usmonov B.S. | rektor | Toshkent kimyo-texnologiya instituti |
4 | Artikov A.A. | professor | Toshkent kimyo-texnologiya instituti |
№ | Name of reference |
---|---|
1 | Abduvaxitovna, S. S., & Isroilovich, U. K. (2024). Dorivor o‘simliklarni gelioquritish qurilmasida quritish jarayonini matematik modellashtirish [Mathematical modeling of the drying process of medicinal plants in a helio-drying device]. (In Uzbek). Science and Innovative Development, 7 (4), Article 4. |
2 | Arslankaya, S. (2023). Comparison of performances of fuzzy logic and adaptive neuro-fuzzy inference system (ANFIS) for estimating employee labor loss. Journal of Engineering Research, 11 (4), 469–477. https://doi.org/10.1016/j.jer.2023.100107 |
3 | Bala, B. K., & Woods, J. L. (1995). Optimization of natural-convection, solar drying systems. Energy, 20 (4), 285–294. https://doi.org/10.1016/0360-5442(94) 00083-F |
4 | Belessiotis, V., & Delyannis, E. (2011). Solar drying. Solar Energy, 85 (8), 1665–1691. https://doi. org/10.1016/j.solener.2009.10.001 |
5 | Deng, Z., Li, M., Xing, T., Zhang, J., Wang, Y., & Zhang, Y. (2021). A literature research on the drying quality of agricultural products with using solar drying technologies. Solar Energy, (229), 69–83. https://doi.org/10.1016/j.solener. 2021.07.041 |
6 | Eshbobaev, J., Norkobilov, A., Usmanov, K., Khamidov, B., Kodirov, O., & Avezov, T. (2024). Control of Wastewater Treatment Processes Using a Fuzzy Logic Approach. The 3rd International Electronic Conference on Processes (p. 39). https://doi.org/10.3390/engproc2024067039 |
7 | Gulyamov, Sh. M. (2018). Intelligent control technology, the reliability of the measuring information. Chemical Technology, Control and Management, 3, 128–131. |
8 | Hamdi, I., Kooli, S., Elkhadraoui, A., Azaizia, Z., Abdelhamid, F., & Guizani, A. (2018). Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy, (127), 936–946. https://doi.org/10.1016/j.renene. 2018.05.027 |
9 | Hernández, A. L., & Quiñonez, J. E. (2018). Experimental validation of an analytical model for performance estimation of natural convection solar air heating collectors. Renewable Energy, 117, 202–216. https://doi.org/10.1016/j.renene. 2017.09.082 |
10 | Ho, C.-D., Yeh, H.-M., & Chen, T.-C. (2011). Collector efficiency of upward-type double-pass solar air heaters with fins attached. International Communications in Heat and Mass Transfer, 38 (1), 49–56. https://doi.org/10.1016/j.icheat masstransfer.2010.09.015 |
11 | Jain, D., & Tiwari, G. N. (2004). Effect of greenhouse on crop drying under natural and forced convection II. Thermal modeling and experimental validation. Energy Conversion and Management, 45 (17), 2777–2793. https://doi.org/10.1016/j. enconman.2003.12.011 |
12 | Lamidi, R. O., Jiang, L., Pathare, P. B., Wang, Y. D., & Roskilly, A. P. (2019). Recent advances in sustainable drying of agricultural produce: A review. Applied Energy, (233–234), 367–385. https://doi. org/10.1016/j.apenergy.2018.10.044 |
13 | López-Vidaña, E. C., Méndez-Lagunas, L. L., & Rodríguez-Ramírez, J. (2013). Efficiency of a hybrid solar–gas dryer. Solar Energy, (93), 23–31. https://doi.org/10.1016/j.solener.2013.01.027 |
14 | Madhankumar, S., Viswanathan, K., Taipabu, M. I., & Wu, W. (2023). A review on the latest developments in solar dryer technologies for food drying process. Sustainable Energy Technologies and Assessments, 58, 103298. https://doi.org/10.1016/j.seta.2023.103298 |
15 | Mohammadi, B., Ranjbar, S. F., & Ajabshirchi, Y. (2018). Application of dynamic model to predict some inside environment variables in a semi-solar greenhouse. Information Processing in Agriculture, 5 (2), 279–288. https://doi.org/10.1016/j.inpa.2018.01.001 |
16 | Mukhamedieva, D.T. (2020). Yechim optimizatsiya vazifalarini hal qilish yondashuvlari, tabiiy hisoblash algoritmlariga asoslangan [The solution is based on approaches to solving optimization tasks, natural computing algorithms]. (In Uzbek). Scientific and Technical Journal, 24 (2), 58–67. |
17 | Prakash, O., & Kumar, A. (2014). ANFIS modelling of a natural convection greenhouse drying system for jaggery: An experimental validation. International Journal of Sustainable Energy, 33 (2), 316–335. https://doi.org/10.1080/ 14786451.2012.724070 |
18 | Prakash, O., Kumar, A., Kaviti, A. K., & Kumar, P. V. (2015). Prediction of the rate of moisture evaporation from jaggery in greenhouse drying using the fuzzy logic. Heat Transfer Research, 46 (10), 923–935. https://doi.org/10.1615/HeatTrans Res.2015007463 |
19 | Rejabov, S., Usmonov, B., Usmanov, K., & Artikov, A. (2024). Experimental Comparison of Open Sun and Indirect Convection Solar Drying Methods for Apricots in Uzbekistan. The 3rd International Electronic Conference on Processes (p. 26). https://doi.org/10.3390/engproc2024067026 |
20 | Rejabov, S. A., Usmonov, B. Sh., & Artiqov, A. A. (2024). Oʻrik mevasini majburiy konveksiyali quyosh quritgichida quritish vaqtini hisoblash [Calculation of the drying time of apricots in a forced convection solar dryer]. (In Uzbek). Science and Innovative Development, 7 (2), 48–60. https:// cyberleninka.ru/article/n/o-rik-mevasini-majburiy-konveksiyali-quyosh-quritgichida-quritishvaqtini-hisoblash |
21 | Sidikov, S. I., Usmanov, K. I., Yakubova, N. S., & Kazakhbayev, S. A. (2020). Nechetkoye sinergeticheskoye upravleniye nelineynykh sistem [Fuzzy synergetic control of nonlinear systems]. (In Russian). Journal of Advances in Engineering Technology, (2), 16–19. https://doi.org/10.24412/2181- 1431-2020-2-16-19 |
22 | Simo-Tagne, M., Zoulalian, A., Rémond, R., & Rogaume, Y. (2018). Mathematical modelling and numerical simulation of a simple solar dryer for tropical wood using a collector. Applied Thermal Engineering, (131), 356–369. https://doi.org/10.1016/j.applthermaleng.2017.12.014 |
23 | Sultanova, S., Usmanov, K., Ungbayeva, D., & Tadjibayeva, D. (2024). Development of adaptive neural-fuzzy models for predicting solar dryer performance. Universum: Technical Sciences, 122 (5). https://doi.org/10.32743/ UniTech.2024.122.5.17503 |
24 | Vafamand, N., Arefi, M. M., & Khayatian, A. (2018). Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Transactions, 74, 134–143. https:// doi.org/10.1016/j.isatra.2018.02.005 |
25 | Yusupbekov, N. R., Aliyev, R. A., Aliyev, R. R., & Yusupbekov, N. A. (2014). Intellektualniy sistemalar boshqaruvi va qaror qabul qilish [Management of intelligent systems and decision-making]. (P. 490). (In Uzbek). Tashkent: O‘zbekiston milliy entsiklopediyasi. |
26 | Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. https://doi. org/10.1016/S0019-9958(65)90241-X |
27 | Zoukit, A., El Ferouali, H., Salhi, I., Doubabi, S., & Abdenouri, N. (2019). Design of mamdani type fuzzy controller for a hybrid solar-electric dryer: Case study of clay drying. 2019 6th International Conference on Control, Decision and Information Technologies – CoDIT (pp. 1332–1337). https://doi. org/10.1109/CoDIT. 2019.8820581 |