20

Jahonda yiliga 555,6 teravatt-soat energiya yeyilgan mashina 
qismlarini qayta tiklash, almashtirish va yeyilish natijasida buzilish ehtimoli 
bo‘lgan qismlarni zaxirada saqlash uchun sarflanadi. Tog‘-kon sanoatida eng ko‘p 
energiya iste’moli uchun sarflanadigan mablag‘lar ma’danlarni maydalash (33 %), 
tashish (24 %), ventilatsiya tizimi (9 %) va qazib olish (8 %) ulushiga to‘g‘ri keladi. 
Mashinasozlik sanoatining hozirgi kundagi asosiy vazifalaridan biri tez yeyiluvchi 
mashina detallarining ishlash muddatini oshirishdir. Ushbu tadqiqotda turli 
miqdordagi xromli oq cho‘yanlar strukturasiga termik ishlov berishning ta’siri tahlil 
qilindi. Strukturadagi o‘zgarishlarni kuzatish va uning yeyilishga bardoshliligini 
oshirish uchun quyma materiallarga termik ishlov berildi. Termik ishlov berish 
quyidagi tartibda amalga oshirildi: 1) toblash – har bir materialning ikkita namunasi 
1 soat davomida 1000 oC harorat oralig‘ida ushlab turildi va moy bilan sovitildi; 
2) bo‘shatish – 200 oC haroratda 2 soat davomida ushlab turildi va xona haroratida 
sovitildi. Bundan tashqari, quyma namunalarning mikro strukturasini o‘rganish va 
ularning termik ishlov berish jarayonidan keyingi holatini solishtirish uchun har 
bir materialdan olingan namunalar quyma holida qoldirilgan. Tahlil natijalariga 
ko‘ra, Cr miqdori 31 % bo‘lgan va termik ishlov berilib, moy bilan sovitilgan namuna 
eng yaxshi xususiyatlarni ko‘rsatdi. Eng yomon ko‘rsatkichlar esa Cr miqdori 28 % 
bo‘lgan, termik ishlov berilgan va havoda sovitilgan namunada qayd etildi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 02-06-2025
  • Read count 20
  • Date of publication 24-02-2025
  • Main LanguageO'zbek
  • Pages38-48
Ўзбек

Jahonda yiliga 555,6 teravatt-soat energiya yeyilgan mashina 
qismlarini qayta tiklash, almashtirish va yeyilish natijasida buzilish ehtimoli 
bo‘lgan qismlarni zaxirada saqlash uchun sarflanadi. Tog‘-kon sanoatida eng ko‘p 
energiya iste’moli uchun sarflanadigan mablag‘lar ma’danlarni maydalash (33 %), 
tashish (24 %), ventilatsiya tizimi (9 %) va qazib olish (8 %) ulushiga to‘g‘ri keladi. 
Mashinasozlik sanoatining hozirgi kundagi asosiy vazifalaridan biri tez yeyiluvchi 
mashina detallarining ishlash muddatini oshirishdir. Ushbu tadqiqotda turli 
miqdordagi xromli oq cho‘yanlar strukturasiga termik ishlov berishning ta’siri tahlil 
qilindi. Strukturadagi o‘zgarishlarni kuzatish va uning yeyilishga bardoshliligini 
oshirish uchun quyma materiallarga termik ishlov berildi. Termik ishlov berish 
quyidagi tartibda amalga oshirildi: 1) toblash – har bir materialning ikkita namunasi 
1 soat davomida 1000 oC harorat oralig‘ida ushlab turildi va moy bilan sovitildi; 
2) bo‘shatish – 200 oC haroratda 2 soat davomida ushlab turildi va xona haroratida 
sovitildi. Bundan tashqari, quyma namunalarning mikro strukturasini o‘rganish va 
ularning termik ishlov berish jarayonidan keyingi holatini solishtirish uchun har 
bir materialdan olingan namunalar quyma holida qoldirilgan. Tahlil natijalariga 
ko‘ra, Cr miqdori 31 % bo‘lgan va termik ishlov berilib, moy bilan sovitilgan namuna 
eng yaxshi xususiyatlarni ko‘rsatdi. Eng yomon ko‘rsatkichlar esa Cr miqdori 28 % 
bo‘lgan, termik ishlov berilgan va havoda sovitilgan namunada qayd etildi.

Русский

Ежегодно в мире 555,6 тераватт-часов энергии расходуется на 
восстановление, замену и хранение запасных частей машин, которые могут 
выйти из строя в результате износа. В горнодобывающей промышленности 
наибольшая доля затрат энергии приходится на дробление руды (33 %), 
транспортировку (24 %), систему вентиляции (9 %) и добычу (8 %). Одной из 
ключевых задач современного машиностроения является увеличение срока 
службы быстроизнашивающихся деталей машин. В данном исследовании 
проанализировано влияние термической обработки на структуру белых 
чугунов с различным содержанием хрома. Для наблюдения изменений 
в структуре и повышения износостойкости литейные материалы 
подвергались термической обработке. Термическая обработка проводилась 
в следующем порядке: 1) закалка – два образца каждого материала 
выдерживались при температуре 1000 oC в течение одного часа и охлаждались 
в масле; 2) освобождение – выдерживались при температуре 200 oC в течение 
двух часов и охлаждались до комнатной температуры. Кроме того, для 
изучения микроструктуры литых образцов и сравнения их состояния после 
термической обработки образцы каждого материала оставлялись в литом состоянии. Согласно результатам анализа, образец с содержанием Cr 31 %, 
подвергнутый термической обработке и охлаждённый в масле, показал 
наилучшие характеристики. Наихудшие показатели были зафиксированы 
у образца с содержанием Cr 28 %, подвергнутого термической обработке и 
охлаждённого на воздухе.

English

EEvery year, 555.6 terawatt-hours of energy are consumed worldwide to restore, replace, and store machine parts that can fail due to wear. In the mining industry, the largest share of energy costs is accounted for by ore crushing (33%), transportation (24%), ventilation system (9%), and extraction (8%). One of the key tasks of modern mechanical engineering is to increase the service life of quickly wearing machine parts. This study analyzes the effect of heat treatment on the structure of white cast irons with different chromium contents. To observe changes in the structure and improve wear resistance, the casting materials were subjected to heat treatment. Heat treatment was carried out in the following order: 1) quenching - two samples of each material were kept at a temperature of 1000 oC for one hour and cooled in oil; 2) release - kept at a temperature of 200 oC for two hours and cooled to room temperature. In addition, to study the microstructure of the cast samples and compare their condition after heat treatment, samples of each material were left in the cast state. According to the analysis results, the sample with a Cr content of 31%, subjected to heat treatment and cooled in oil, showed the best characteristics. The least indicators were recorded for the sample with a Cr content of 28%, subjected to heat treatment and cooled in air.

Name of reference
1 Bedolla-Jacuinde, A., Correa, R., Quezada, J. G., & Maldonado, C. (2005). Effect of titanium on the as-cast microstructure of a 16% chromium white iron. Advanced Materials Research, 398-399, 297-308. https://doi.org/10.1016/j.msea.2005.03.072
2 Chung, R. J., Tang, X., Li, D. Y., Hinckley, B., & Dolman, K. (2013). Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear, 301 (1-2), 695-706. https://doi.org/10.1016/j.wear.2013.01.079
3 Chung, R. J., Tang, X., Li, D. Y., Hinckley, B., & Dolman, K. (2009). Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe–25wt.%Cr–4wt.%C. Wear, 267 (1-4), 356-361. https://doi.org/10.1016/j.wear.2008.12.061
4 Doğan, Ö. N., Hawk, J. A., & Laird, G. (1997). Solidification structure and abrasion resistance of high chromium white irons. Metallurgical and Materials Transactions A, 28 (6), 1315-1328. https://doi. org/10.1007/s11661-997-0267-3
5 Egamberdiev, I. P., Khamroev, N. N., & Ashurov, Kh. Kh. (2024). Analysis of the influence of carbide phases on wear resistance. Science and Innovative Development, 7 (4), 37-45.
6 Gaqi, Y., Kusumoto, K., Shimizu, K., & Purba, R. H. (2023). Effect of carbide orientation on wear characteristics of high-alloy wear-resistant cast irons. Lubricants, 11 (7), 272. https://doi. org/10.3390/lubricants11070272
7 Garber, M. E. (2010). Wear-resistant white cast irons: Properties, structure, technology, operation. [In Russian]. Mechanical Engineering.
8 Hashimoto, M., Kubo, O., & Matsuraba, Y. (2004). Analysis of carbides in multi-component white cast iron for hot rolling mill rolls. ISIJ International, 44 (2), 372-380. https://doi.org/10.2355/ isijinternational.44.372
9 Holmberg, K., & Erdemir, A. (2017). Influence of tribology on global energy consumption, costs and emissions. Friction, 5 (3), 263-284. https://doi.org/10.1007/s40544-017-0183-5
10 Holmberg, K., Kiviktyo-Reponen, P., Harkisari, P., & Homberg, K. (2017). Global energy consumption due to friction and wear in the mining industry. Tribology International, 115, 116-139. https://doi.org/10.1016/j.triboint.2017.05.010
11 Inditech, S., Sricharoenchai, P., & Masturaba, Y. (2012). Effect of molybdenum content on subcritical heat treatment behaviour of hypoeutectic 16 and 26 wt-% chromium cast irons. International Journal of Cast Metals Research, 25 (5), 25-34. https://doi.org/10.1179/174313361 2Y.0000000009
12 Khamroev, N., Egamberdiev, I., Ashurov, Kh., Asatov, S., & Khamidov, B. (2024). Exploring the in�luence of the casting process, structural components and heat treatment on the mechanical properties of high-chromium cast irons: A review. AIP Conference Proceedings (vol. 3244, p. 060021). https://doi.org/10.1063/5.0241423
13 Kusumoto, K., Shimizu, K., Yaer, X., Zhang, Y., & Ota, J. (2017). Abrasive wear characteristics of Fe-2C-5Cr-5Mo-5W-5Nb multi-component white cast iron. Wear, 367-368, 22-29. https://doi. org/10.1016/j.wear.2017.01.096
14 Laperrière, L., Reinhart, G., & Chatti, S. (Eds.). (2019). CIRP - The International Academy for Production Engineering. Springer.
15 Lin, C. M., Lai, H. H., Kuo, J. C., & Wu, W. (2011). Effect of carbon content on solidification behaviors and morphological characteristics of the constituent phases in Cr-Fe-C alloys. Materials Characterization, 62 (12), 1124-1133. https://doi.org/10.1016/j.matchar.2011.09.007
16 Ma, S., Xing, J., He, Y., Li, Y., Huang, Z., Liu, G., & Geng, Q. (2015). Microstructure and crystallography of M7C3 carbide in chromium cast iron. Materials Chemistry and Physics, 161, 62-73. https://doi.org/10.1016/j.matchemphys.2015.05.008
17 Purba, R. H., Shimizu, K., Kusumoto, K., Todaka, T., Shirai, M., Hara, H., & Ito, J. (2021). Erosive wear characteristics of high-chromium based multi-component white cast irons. Tribology International, 159, 106982. https://doi.org/10.1016/j.triboint.2021.106982
18 Shimizu, K., Purba, R. H., Kusumoto, K., Yaer, X., Ito, J., Kasuga, H., & Gaqi, Y. (2019). Microstructural evaluation and high-temperature erosion characteristics of high chromium cast irons. Wear, 426-427, 420-427. https://doi.org/10.1016/j.wear.2019.01.043
19 Tabrett, C. P., Sare, I. R., & Ghomashchi, M. R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews, 41 (2), 59-82. https://doi. org/10.1179/imr.1996.41.2.59
20 Tang, X. H., Chung, R., Pang, C. J., Li, D. Y., Hinckley, B., & Dolman, K. (2011). Microstructure of high (45wt.%) chromium cast irons and their resistances to wear and corrosion. Wear, 271 (9-10), 1426-1431. https://doi.org/10.1016/j.wear.2010.11.047
21 Touhami, R. C., Mechachti, S., Bouhamla, K., Hadji, A., & Khettache, A. (2023). Wear behavior and microstructure changes of a high chromium cast iron: The combined effect of heat treatment and alloying elements. Metallography, Microstructure, and Analysis, 12 (4), 580-590. https://doi. org/10.1007/s13632-023-00976-w
22 Xu, L., Wang, F., Li, M., Wang, X., Jiang, T., Deng, X., & Wei, S. (2023). Fabrication and abrasive wear property of high chromium cast iron with high vanadium and high nitrogen content (HCCI-VN). Wear, 523, 204828. https://doi.org/10.1016/j.wear.2023.204828
23 Yakhshiev, Sh., Egamberdiev, I., Mamadiyarov, A., Ashurov, Kh., & Khamroev, N. (2023). Accuracy evaluation of the output of the spindle assembly of the NT-250I lathe machine. Research on Engineering Structures & Materials, 9 (1), 163–179. https://doi.org/10.17515/resm2022.523me0914
24 Yilmaz, S. O. (2005). Wear behavior of gas tungsten arc deposited Fe-Cr-C, Fe-Cr-Si, and W-Co coatings on AISI 1018 steel. Surface and Coatings Technology, 194 (2-3), 175-183. https://doi. org/10.1016/j.surfcoat.2004.08.227
Waiting