Ushbu maqolada O‘zbekiston Respublikasi metrologik taʼminotining
etalonlar bazasini modernizatsiyalash dolzarbligi tadqiq etilgan; yangi etalon ishlab
chiqish bo‘yicha olingan natijalar va ulardan kelib chiqadigan ilmiy-amaliy xulosalar
bayon qilingan; suyuq muhitlarning muhim sifat va xavfsizlik ko‘rsatkichlaridan biri
bo‘lgan kinematik qovushqoqlikni yuqori metrologik aniqlikda o‘lchash masalalari
ko‘rib chiqilgan. Muallifning taʼkidlashicha, ishchi o‘lchash vositalarini kalibrlash
orqali o‘lchash natijalarining metrologik kuzatuvchanligi o‘rnatiladi. Аsosiy
eʼtibor tajriba-sinov ishlari natijalarini tahlil qilish, qurilmani verifikatsiyalash,
laboratoriya ichidagi va laboratoriyalararo solishtiruv sinovlarini o‘tkazish hamda
qovushqoqlikning metrologik kuzatuvchanligini o‘rnatilgan standart namunalar
(sertifikatlangan suyuqlik) bilan taqqoslashga qaratilgan. Tajribalar o‘lchash
qurilmasining metrologik yaroqliligini baholash maqsadida o‘tkazilgan. Shu
bilan birga, qovushqoqlikning suyuq muhit harorati va zichligi kabi omillarga
yuqori sezuvchanligini o‘rganish asosida korrelyatsion tahlil olib borilgan.
Nazariy va tajriba-sinov tadqiqotlari natijalarini o‘lchov vositasining metrologik
xossalarini kalibrlash jarayonida qo‘llash va tijoratlashtirishga yaroqliligi
tasdiqlandi. Bugungi kunda kinematik qovushqoqlik birligi milliy boshlang‘ich eta-
loni davlat metrologiya xizmatida qo‘llanib, yuqori darajada tijoratlashtirilgan.
Ishlab chiqilgan o‘lchash vositasi korxona va tashkilotlarning ishchi vizkozimetrlarini
keng haroratlar oralig‘ida va qovushqoqlik shkalasining o‘lchash diapazonida
metrologik tadqiq qilish imkoniyatini yaratdi. Buning natijasida ISO/IEC 17025:2017
xalqaro standartiga muvofiq, akkreditlangan laboratoriyada kalibrlash ishlari
bajarilib, tayanch qiymatdan og‘ish hamda kengaytirilgan o‘lchash noaniqligini
baholash amalga oshirilmoqda. Taklif qilingan yondashuvga ko‘ra, o‘lchashning
kengaytirilgan noaniqligi 95 % qamrab olish ehtimolini ta’minlovchi normal
taqsimotga mos holda, o‘lchashning standart noaniqligini qamrab olish koeffitsiyenti
k = 2 ga ko‘paytirish orqali baholanadi. Standart noaniqlik GUM va COOMET
R/GM/32:2017 larga muvofiq aniqlandi.
Ushbu maqolada O‘zbekiston Respublikasi metrologik taʼminotining
etalonlar bazasini modernizatsiyalash dolzarbligi tadqiq etilgan; yangi etalon ishlab
chiqish bo‘yicha olingan natijalar va ulardan kelib chiqadigan ilmiy-amaliy xulosalar
bayon qilingan; suyuq muhitlarning muhim sifat va xavfsizlik ko‘rsatkichlaridan biri
bo‘lgan kinematik qovushqoqlikni yuqori metrologik aniqlikda o‘lchash masalalari
ko‘rib chiqilgan. Muallifning taʼkidlashicha, ishchi o‘lchash vositalarini kalibrlash
orqali o‘lchash natijalarining metrologik kuzatuvchanligi o‘rnatiladi. Аsosiy
eʼtibor tajriba-sinov ishlari natijalarini tahlil qilish, qurilmani verifikatsiyalash,
laboratoriya ichidagi va laboratoriyalararo solishtiruv sinovlarini o‘tkazish hamda
qovushqoqlikning metrologik kuzatuvchanligini o‘rnatilgan standart namunalar
(sertifikatlangan suyuqlik) bilan taqqoslashga qaratilgan. Tajribalar o‘lchash
qurilmasining metrologik yaroqliligini baholash maqsadida o‘tkazilgan. Shu
bilan birga, qovushqoqlikning suyuq muhit harorati va zichligi kabi omillarga
yuqori sezuvchanligini o‘rganish asosida korrelyatsion tahlil olib borilgan.
Nazariy va tajriba-sinov tadqiqotlari natijalarini o‘lchov vositasining metrologik
xossalarini kalibrlash jarayonida qo‘llash va tijoratlashtirishga yaroqliligi
tasdiqlandi. Bugungi kunda kinematik qovushqoqlik birligi milliy boshlang‘ich eta-
loni davlat metrologiya xizmatida qo‘llanib, yuqori darajada tijoratlashtirilgan.
Ishlab chiqilgan o‘lchash vositasi korxona va tashkilotlarning ishchi vizkozimetrlarini
keng haroratlar oralig‘ida va qovushqoqlik shkalasining o‘lchash diapazonida
metrologik tadqiq qilish imkoniyatini yaratdi. Buning natijasida ISO/IEC 17025:2017
xalqaro standartiga muvofiq, akkreditlangan laboratoriyada kalibrlash ishlari
bajarilib, tayanch qiymatdan og‘ish hamda kengaytirilgan o‘lchash noaniqligini
baholash amalga oshirilmoqda. Taklif qilingan yondashuvga ko‘ra, o‘lchashning
kengaytirilgan noaniqligi 95 % qamrab olish ehtimolini ta’minlovchi normal
taqsimotga mos holda, o‘lchashning standart noaniqligini qamrab olish koeffitsiyenti
k = 2 ga ko‘paytirish orqali baholanadi. Standart noaniqlik GUM va COOMET
R/GM/32:2017 larga muvofiq aniqlandi.
В данной статье исследована актуальность модернизации
базового эталона метрологического обеспечения Республики Узбекистан;
изложены результаты разработки нового эталона и вытекающие из
них научно-практические выводы; рассмотрены вопросы измерения
с высокой метрологической точностью кинематической вязкости –
одного из важнейших показателей качества и безопасности жидких сред.
Автор отмечает, что путём калибровки рабочих средств измерений
устанавливается метрологическая прослеживаемость результатов
измерений. Основное внимание уделяется анализу результатов
опытно-испытательных работ, верификации прибора, проведению внутрилабораторных и межлабораторных сравнительных испытаний,
а также сопоставлению метрологической прослеживаемости вязкости
с установленными стандартными образцами (сертифицированной
жидкостью). Эксперименты проводились с целью оценки метрологической
пригодности измерительного прибора. Однако на основе изучения
гиперчувствительности вязкости к таким факторам, как температура
и плотность жидкой среды, был проведён корреляционный анализ. По
результатам теоретических и опытно-экспериментальных исследований
подтверждена пригодность метрологических свойств средства
измерений к применению в процессе калибровки и его коммерциализации.
Сегодня национальный базовый эталон единицы кинематической
вязкости широко коммерциализирован, используется в государственной
метрологической службе. Разработанный измерительный прибор
позволил проводить метрологические исследования рабочих
вискозиметров предприятий и организаций в широком интервале
температур и диапазоне измерений шкалы вязкости. В результате
в соответствии с международным стандартом ISO/IEC 17025:2017
в аккредитованной лаборатории проведены калибровочные работы,
оценивающие отклонения от базового значения и расширенную
неопределённость измерений. Согласно предложенному под-
ходу, расширенная неопределённость измерений оценивается путём
умножения стандартной неопределённости измерения на коэффициент
покрытия k = 2 в соответствии с нормальным распределением, обеспечи-
вающим вероятность покрытия 95 %. Стандартная неопределённость бы-
ла определена в соответствии с рекомендациями GUM и COOMET
R/GM/32:2017.
This article examines the relevance of upgrading the basic standard
of metrological support of the Republic of Uzbekistan; presents the results
of the new standard development and the resulting scientific and practical
conclusions; considers the issues of measuring kinematic viscosity, one of the
most important indicators of the quality and safety of liquid media, with high
metrological accuracy. The author highlights that metrological observability
of measurement readings is reached by calibrating working measuring tools.
The main attention is paid to the analysis of the findings from experimental
testing, device verification, intra- and inter-laboratory comparative tests,
as well as from comparison of metrological traceability of viscosity with
established standard samples (certified liquid). The experiments were
conducted to assess metrological suitability of the measuring device. However,
based on the study into viscosity hypersensitivity to such factors as temperature
and density of the liquid medium, a correlation analysis was made. Findings
from theoretical and experimental studies helped to confirm the suitability
of metrological properties of the measuring tool for use in the calibration
process and its commercialization. Nowadays, the national basic standard
of the unit of kinematic viscosity has been broadly commercialized and used
in the state metrology service. The developed measuring device has enabled
metrological studies of working viscometers of enterprises and organizations
in a wide range of temperatures and a range of viscosity scale measurements.
As a result, in accordance with the international standard ISO / IEC 17025: 2017, calibration was made in an accredited laboratory to assess deviations
from the basic value and the expanded measurement uncertainty. According to
the proposed approach, the expanded measurement uncertainty is estimated
by multiplying the standard measurement uncertainty by the coverage factor
k = 2 in compliance with normal distribution, providing a coverage probability
of 95%. The standard uncertainty was determined in accordance with the GUM
and COOMET R / GM / 32: 2017 recommendations.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Masharipov S.M. | texnika fanlari bo‘yicha falsafa doktori (PhD),“Elektronika va avtomatika” fakulteti, “Metrologiya, texnik jihatdan tartibga solish, standartlashtirish va sertifikatlashtirish” kafedrasi dotsenti | Islom Karimov nomidagi Toshkent davlat texnika universiteti |
№ | Name of reference |
---|---|
1 | Ajimotokan, H. A. (2024). Viscosity of Fluid Lubricants. In: Principles and Applications of Tribology. Springer Briefs in Applied Sciences and Technology. Springer, Cham. https://doi. org/10.1007/978-3-031-57409-2_3 |
2 | Bhattad, A. (2023). Review on viscosity measurement: devices, methods and models. Therm Anal Calorim, 148, 6527-6543. https://doi.org/10.1007/s10973-023-12214-0 |
3 | Chashechkin, Y. D. (2024). Analysis of Fundamentals of Calculation and Measuring Techniques in Fluid Dynamics. Tech. Phys. https://doi.org/10.1134/S1063784224700518 |
4 | Chekirda, K. V., Demyanov, A. A., Neklyudova, A. A., Domostroev, A. V., & Sulaberidze, V. Sh. (2022). History of creation and modernization of state primary measurement standards of units of dynamic, kinematic viscosity of liquid and density. (In Russian). Measuring Technique, 7, 24-29. |
5 | Gupta, S. V. (2014). Kinematic Viscosity Scale and Uncertainty. In: Viscometry for Liquids. Springer Series in Materials Science (vol. 194). Springer, Cham. https://doi.org/10.1007/978-3-319- 04858-1_2 |
6 | International Organization of Legal Metrology. (2019). Newtonian viscosity standard for the calibration and verification of viscometers. Reference standard liquids. OIML D 33 Ed. |
7 | Joseph, L., Ramesh, P., Remya, N. S., et al. (2022). Significance of Metrological Tools in an ISO 17025 Accredited Quality System for a Biological Evaluation Facility. MAPAN, 37, 683-691. https://doi. org/10.1007/s12647-021-00517-2 |
8 | Kerschbaum, S., & Rinke, G. (2004). Measurement of the Temperature Dependent Viscosity of Biodiesel Fuels. Fuel, 83. 287-291. https://doi.org/10.1016/j.fuel.2003.08.001. |
9 | Lau, J. P. K., & Fung, A. W. (2024). Promotion of metrological traceability through the provision of a metrologically traceable pro�iciency testing reference value for the mass fraction of benzoic acid in fish sauce. Accred Qual Assur. https://doi.org/10.1007/s00769-024-01618-6 |
10 | Liu, S., Okada, A. & Kitamura, T. (2024). Fundamental study on dielectric oil viscosity for high- performance wire EDM. Int J Adv Manuf Technol., 135, 3451-3461. https://doi.org/10.1007/s00170- 024-14693-3 |
11 | Malyugin, R. V., Yelina, E. I., Grigoriev, B. V., & Yelin, A. (2024). Investigation of Newtonian liquids �low in circular horizontal tubes at small inlet pressures. (In Russian). Measuring Equipment, 2. |
12 | Mandell, A. M. (2023). Viscosity. In: M. Gargaud et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65093-6_1661 |
13 | Masharipov, Sh. M., & Rakhmatullayev, S. A. (2023). Kinematic viscosity of liquid media and providing metrological observability of experimental results. Proceedings of the VIII International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-VIII 2023), Krasnoyarsk, Russia. E3S Web of Conf., 390. |
14 | Masharipov, Sh. M., Mavlyanov, M. A., & Abdumajidov, I. B. (2022). Modern methods for measuring the kinematic viscosity of liquid media and ensuring metrological traceability of experimental results. Journal of Science and Innovative Development, 2, 98-111. Tashkent. |
15 | Matschat, R., Richter, S., Vogl, J., et al. (2023). On the way to SI traceable primary transfer standards for amount of substance measurements in inorganic chemical analysis. Anal Bioanal Chem, 415, 3057-3071. https://doi.org/10.1007/s00216-023-04660-4 |
16 | Miles, R. N. (2024). Effects of Viscosity. In: Physical Approach to Engineering Acoustics. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-031-33009-4_9 |
17 | Mirgorodskaya, A. V. (2023). The history of the development of the capillary method for measuring kinematic viscosity: from the Lomonosov viscometer to the information-measuring system. Meas Tech, 66, 610-618. https://doi.org/10.1007/s11018-023-02273-y |
18 | Neklyudova, A. A., & Sulaberidze, V. Sh. (2024). Analysis of metrological reliability indicators of glass capillary standard viscometers. (In Russian). Bulletin of Bauman Moscow State Technical University. Series: Instrument Engineering, 1 (146). https://cyberleninka.ru/article/n/ analiz-pokazateley-metrologicheskoy-nadezhnosti-viskozimetrov-steklyannyh-kapillyarnyh- etalonnyh |
19 | Owuna, F. J., Chapoy, A., Ahmadi, P., et al. (2024). Viscosity of Hydrogen and Methane Blends: Experimental and Modelling Investigations. Int J Thermophys, 45, 119. https://doi.org/10.1007/ s10765-024-03394-4 |
20 | Qasem, N. A. A., Generous, M. M., Qureshi, B. A., & Zubair, S. M. (2023). Viscosity. In: Thermodynamic and Thermophysical Properties of Saline Water. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-35193-8_9 |
21 | Ryltsev, I. A., Ryltseva, K. E., & Shrager, G. R. (2020). Kinematics of a power-law fluid flow in a pipe with a varying cross section. (In Russian). Bulletin of Tomsk State University, 63, 125-138. |
22 | Sargent, M. (2020). The provision and use of traceability statements for reference materials. Accred Qual Assur, 25, 367-372. https://doi.org/10.1007/s00769-020-01450-8 |
23 | Tsurko, A. A., & Demyanov, A. A. (2014). State of metrological support of oil products viscosity measurements. (In Russian). Measuring Equipment, 4, 65-66. |
24 | Wang, W., Zhang, G., Wang, H., et al. (2023). Influence of Kinematic Viscosity of Base Oil on Magnetorheological Grease. Shanghai Jiaotong Univ. (Sci.), 28, 676-685. https://doi.org/10.1007/ s12204-022-2438-1 |
25 | Zaccone, A. (2023). Viscosity of Supercooled Liquids. In: Theory of Disordered Solids. Lecture Notes in Physics (vol. 1015). Springer, Cham. https://doi.org/10.1007/978-3-031-24706-4_7 |