44

Hozirgi kunda suv tanqisligi dunyo bo‘ylab dolzarb muammolardan biri 
sanaladi. Sanoat oqova suvlarini qayta ishlashda resurs samarador texnologiyalarni 
qo‘llash muhim ahamiyat kasb etmoqda. Ushbu tadqiqotda sanoat oqova suvlarini 
tozalash jarayonini intellektual boshqarish masalasi o‘rganilgan. Dastlab ion-
almashinish smolalari yordamida oqova suvlarni tozalash qurilmasi ishlab chiqildi va 
Qo‘ng‘irot soda zavodidan olingan sanoat oqova suvlari aralashmasi orqali sinovdan 
o‘tkazildi. Olingan natijalar asosida suvning qattiqligi (H) va umumiy erigan 
minerallar miqdori (TDS)ni oqova suvning sarfi orqali avtomatik boshqarish tizimi 
ishlab chiqildi. Boshqarish tizimi sifatida Adaptiv Neyro-Noqat’iy Mantiqiy Xulosa 
Tizimi (ANFIS) qo‘llandi. Natijalar shuni ko‘rsatdiki, ANFIS asosida boshqarilgan 
tizim an’anaviy PID va noqat’iy mantiqiy boshqaruv usullariga nisbatan rostlash 
vaqtini 25–30 %ga qisqartirish va statik xatoliklarni 12 %ga kamaytirish imkonini 
beradi. Bu orqali suv sarfini rostlovchi servo klapan uchun sarflanadigan energiya 
1,3 %gacha kamaytirildi. Bundan tashqari, jarayonni real vaqt rejimida monitoring 
qilish va avtomatik boshqarishni amalga oshirish maqsadida MasterSCADA 4D 
platformasi asosida dasturiy ta’minot ishlab chiqildi. Ushbu tizim orqali suv sifati 
parametrlarini (H va TDS) uzluksiz kuzatish va optimallashtirish imkoniyati yaratildi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 02-06-2025
  • Read count 44
  • Date of publication 14-04-2025
  • Main LanguageO'zbek
  • Pages8-18
Ўзбек

Hozirgi kunda suv tanqisligi dunyo bo‘ylab dolzarb muammolardan biri 
sanaladi. Sanoat oqova suvlarini qayta ishlashda resurs samarador texnologiyalarni 
qo‘llash muhim ahamiyat kasb etmoqda. Ushbu tadqiqotda sanoat oqova suvlarini 
tozalash jarayonini intellektual boshqarish masalasi o‘rganilgan. Dastlab ion-
almashinish smolalari yordamida oqova suvlarni tozalash qurilmasi ishlab chiqildi va 
Qo‘ng‘irot soda zavodidan olingan sanoat oqova suvlari aralashmasi orqali sinovdan 
o‘tkazildi. Olingan natijalar asosida suvning qattiqligi (H) va umumiy erigan 
minerallar miqdori (TDS)ni oqova suvning sarfi orqali avtomatik boshqarish tizimi 
ishlab chiqildi. Boshqarish tizimi sifatida Adaptiv Neyro-Noqat’iy Mantiqiy Xulosa 
Tizimi (ANFIS) qo‘llandi. Natijalar shuni ko‘rsatdiki, ANFIS asosida boshqarilgan 
tizim an’anaviy PID va noqat’iy mantiqiy boshqaruv usullariga nisbatan rostlash 
vaqtini 25–30 %ga qisqartirish va statik xatoliklarni 12 %ga kamaytirish imkonini 
beradi. Bu orqali suv sarfini rostlovchi servo klapan uchun sarflanadigan energiya 
1,3 %gacha kamaytirildi. Bundan tashqari, jarayonni real vaqt rejimida monitoring 
qilish va avtomatik boshqarishni amalga oshirish maqsadida MasterSCADA 4D 
platformasi asosida dasturiy ta’minot ishlab chiqildi. Ushbu tizim orqali suv sifati 
parametrlarini (H va TDS) uzluksiz kuzatish va optimallashtirish imkoniyati yaratildi.

Русский

В настоящее время нехватка воды является одной из 
актуальных проблем по всему миру. Важное значение приобретает 
применение ресурсосберегающих технологий при переработке 
промышленных сточных вод. В данном исследовании рассмотрена задача 
интеллектуального управления процессом очистки сточных вод. На 
первом этапе была разработана установка для очистки сточных вод 
с использованием ионообменных смол, которая прошла испытания на 
основе смеси сточных вод, полученных с Кунградского содового завода. На 
основе полученных данных была разработана автоматическая система 
управления, регулирующая параметры жёсткости воды (H) и содержания 
общего количества растворённых веществ (TDS) в зависимости от расхода 
сточных вод. В качестве системы управления использовалась адаптивная 
нейро-нечёткая система логического вывода (ANFIS). Результаты показали, 
что система, управляемая на основе ANFIS, позволяет сократить время 
настройки на 25–30 % и уменьшить статические ошибки на 12 % по 
сравнению с традиционными PID- и нечёткими системами управления. 
При этом энергопотребление сервоклапана, регулирующего подачу воды, 
снизилось до 1,3 %. Кроме того, для мониторинга процесса в реальном 
времени и реализации автоматического управления было разработано 
программное обеспечение на платформе MasterSCADA 4D. С помощью этой системы обеспечивается непрерывный контроль и оптимизация 
параметров качества воды (H и TDS).
 

English

Nowadays, water scarcity is one of the most pressing global issues in the 
world. The application of resource-efficient technologies in the treatment of industri-
al wastewater is of significant importance. This study focuses on the intelligent con-
trol of the industrial wastewater treatment process. Initially, we developed and tested 
a wastewater treatment device using ion-exchange resins on a mixture of industrial 
wastewater from the Kungrad soda plant. Based on the obtained results, an automat-
ic control system was designed to regulate water hardness (H) and total dissolved 
solids (TDS) based on the wastewater flow rate. The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) was implemented as the control system. The results demonstrated 
that the ANFIS-based control system reduces adjustment time by 25–30% and de-
creases static error by 12% compared to conventional PID and fuzzy logic control 
methods. This led to a reduction of up to 1.3% in the energy consumption of the servo 
valve that regulates water flow. Additionally, to enable real-time monitoring and au-
tomatic control of the process, software was developed based on the MasterSCADA 
4D platform. This system provides continuous monitoring and optimization of water 
quality parameters (H and TDS).

Author name position Name of organisation
1 Usmanov . . Аvtоmаtlаshtirish vа rаqаmli bоshqаruv” kаfedrаsi mudiri Toshkent kimyo- texnologiya instituti
2 Eshbobayev J.A. 1katta o‘qituvchi Toshkent kimyo-texnologiya instituti
3 Xamidov B. . texnika fanlari nomzod Toshkent kimyo-texnologiya instituti
Name of reference
1 Ahmed, F. E., Hashaikeh, R., Diabat, A., & Hilal, N. (2019). Mathematical and optimization modelling in desalination: State-of-the-art and future direction. Desalination, 469, 114092. https://doi. org/10.1016/j.desal.2019.114092
2 Ahmed, F. E., Khalil, A., & Hilal, N. (2021). Emerging desalination technologies: Current status, challenges and future trends. Desalination, 517, 115183. https://doi.org/10.1016/j.desal.2021.115183
3 Aldair, A. A., Obed, A. A., & Halihal, A. F. (2018). Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system. Renewable and Sustainable Energy Reviews, 82, 2202–2217. https://doi.org/10.1016/j.rser.2017.08.071
4 Almasoudi, S., & Jamoussi, B. (2024). Desalination technologies and their environmental impacts: A review. Sustainable Chemistry One World, 1, 100002. https://doi.org/10.1016/ j.scowo.2024.100002
5 Ayaz, M., Namazi, M. A., Din, M. A. U., Ershath, M. I. M., Mansour, A., & Aggoune, el-H. M. (2022). Sustainable seawater desalination: Current status, environmental implications and future expectations. Desalination, 540, 116022. https://doi.org/10.1016/j.desal.2022.116022
6 Bobat, A., Gezgin, T., & Aslan, H. (2015). The SCADA system applications in management of Yuvacik Dam and Reservoir. Desalination and Water Treatment, 54 (8), 2108–2119. https://doi.org/ 10.1080/19443994.2014.933615
7 Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques – A review of the opportunities for desalination in agriculture. Desalination, 364, 2–16. https://doi.org/10.1016/j.desal.2015.01.041
8 Curto, D., Franzitta, V., & Guercio, A. (2021). A Review of the Water Desalination Technologies. Applied Sciences, 11 (2), 670. https://doi.org/10.3390/app11020670
9 Darre, N. C., & Toor, G. S. (2018). Desalination of water: A review. Current Pollution Reports, 4 (2), 104–111. https://doi.org/10.1007/s40726-018-0085-9
10 Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing �low data. Environmental Monitoring and Assessment, 166 (1), 421–434. https://doi.org/10.1007/s10661-009-1012-8
11 Eshbobaev, J., Norkobilov, A., Turakulov, Z., Khamidov, B., & Kodirov, O. (2023). Field trial of solar-powered ion-exchange resin for the industrial wastewater treatment process. Engineering Proceedings, 37 (1), Article 1. https://doi.org/10.3390/ECP2023-14626
12 Eshbobaev, J., Norkobilov, A., Usmanov, K., Khamidov, B., Kodirov, O., & Avezov, T. (2024). Control of wastewater treatment processes using a fuzzy logic approach. Engineering Proceedings, 67 (1), Article 1. https://doi.org/10.3390/engproc2024067039
13 Ghazi, Z. M., Rizvi, S. W. F., Shahid, W. M., Abdulhameed, A. M., Saleem, H., & Zaidi, S. J. (2022). An overview of water desalination systems integrated with renewable energy sources. Desalination, 542, 116063. https://doi.org/10.1016/j.desal.2022.116063
14 Guerra, M. I. S., De Araújo, F. M. U., De Carvalho Neto, J. T., & Vieira, R. G. (2024). Survey on adaptive neural fuzzy inference system (ANFIS) architecture applied to photovoltaic systems. Energy Systems, 15 (2), 505–541. https://doi.org/10.1007/s12667-022-00513-8
15 kun.uz. (2025, February 27). 2050 yilga borib O‘zbekistonda suv tanqisligi 15-25 foizga yetishi mumkin [By 2050, water scarcity in Uzbekistan may reach 15-25 percent]. (In Uzbek). Kun.uz. https:// kun.uz/news/2024/06/20/2050-yilga-borib-ozbekistonda-suv-tanqisligi-15-25-foizga-yetishi- mumkin
16 Ministry of Water Management of the Republic of Uzbekistan (2025, February 27). https://gov. uz/suvchi
17 Osman, F. A., Hashem, M. Y. M., & Eltokhy, M. A. R. (2022). Secured cloud SCADA system implementation for industrial applications. Multimedia Tools and Applications, 81 (7), 9989–10005. https://doi.org/10.1007/s11042-022-12130-9
18 ‘O‘zsuvta’minot’ Joint-Stock Company. (2025, February 27). https://uzsuv.uz/ru/posts/844
19 Vijayakumar, G., Rajkumar, M., Chandar, N. R., Selvakumar, P., & Duraisamy, R. (2024). Environmentally friendly TDS removal from wastewater by electrochemical ion exchange batch-type recirculation (EIR) technique. Environmental Science: Water Research & Technology, 10 (4), 826–835. https://doi.org/10.1039/D3EW00793F
20 Win, K. T. Z., & Tun, H. M. (n.d.). Design and implementation of SCADA system based power distribution for primary substation.
21 Yusupbekov, N. R., & Avazov, Y. S. (2022). Method of intelligent control of the process of rectification of multicomponent mixtures. Technical Science and Innovation, (3), 148–154. https:// btstu.researchcommons.org/journal/vol2022/iss3/8/
Waiting