28

 Ushbu maqolada to‘qimachilik batani (reed system) dinamik 
muvozanatini yaxshilash, utka urish jarayoni barqarorligini oshirish va 
tebranishlarni minimallashtirish masalalari tahlil qilindi. Tadqiqot Janubiy 
Koreyaning CHEONG WOON 200 dastgohida olib borildi hamda batanning 
tebranish dinamikasi va inersiya kuchlarining ip joylashish aniqligiga ta’siri 
o‘rganildi. Tizim harakatini tavsiflash uchun Lagrangening ikkinchi tur 
tenglamalari qo‘llanib, sonli modellashtirish usullari ishlatildi. Modelning 
ishonchliligi MATLAB va ANSYS dasturiy komplekslari yordamida o‘tkazilgan 
tebranish jarayonining kompyuter simulyatsiyasi orqali tasdiqlandi. Natijalar 
shuni ko‘rsatdiki, qattiqlik va so‘nish parametrlarini optimallashtirish tebranish 
amplitudasini 18–22 %ga kamaytirish hamda mexanizmning energiya 
samaradorligini 12 %ga oshirishga yordam beradi. Shuningdek, tebranishning 
so‘nish vaqti 0,2 sekundga tushirildi. Bu esa uskunaning xizmat muddatini 
uzaytirishga imkon beruvchi optimal ish parametrlari aniqlanganligini tasdiqlaydi. 
Ushbu natijalar to‘qimachilik dastgohlarini loyihalash va modernizatsiya qilish, 
ularning ish samaradorligini oshirishda qo‘llanishi mumkin.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 03-06-2025
  • Read count 28
  • Date of publication 14-04-2025
  • Main LanguageO'zbek
  • Pages100-109
Ўзбек

 Ushbu maqolada to‘qimachilik batani (reed system) dinamik 
muvozanatini yaxshilash, utka urish jarayoni barqarorligini oshirish va 
tebranishlarni minimallashtirish masalalari tahlil qilindi. Tadqiqot Janubiy 
Koreyaning CHEONG WOON 200 dastgohida olib borildi hamda batanning 
tebranish dinamikasi va inersiya kuchlarining ip joylashish aniqligiga ta’siri 
o‘rganildi. Tizim harakatini tavsiflash uchun Lagrangening ikkinchi tur 
tenglamalari qo‘llanib, sonli modellashtirish usullari ishlatildi. Modelning 
ishonchliligi MATLAB va ANSYS dasturiy komplekslari yordamida o‘tkazilgan 
tebranish jarayonining kompyuter simulyatsiyasi orqali tasdiqlandi. Natijalar 
shuni ko‘rsatdiki, qattiqlik va so‘nish parametrlarini optimallashtirish tebranish 
amplitudasini 18–22 %ga kamaytirish hamda mexanizmning energiya 
samaradorligini 12 %ga oshirishga yordam beradi. Shuningdek, tebranishning 
so‘nish vaqti 0,2 sekundga tushirildi. Bu esa uskunaning xizmat muddatini 
uzaytirishga imkon beruvchi optimal ish parametrlari aniqlanganligini tasdiqlaydi. 
Ushbu natijalar to‘qimachilik dastgohlarini loyihalash va modernizatsiya qilish, 
ularning ish samaradorligini oshirishda qo‘llanishi mumkin.

Русский

В данной статье рассмотрены вопросы повышения 
динамического баланса гребня (reed system) в ткацком станке, увеличения 
устойчивости процесса прокладывания утка и минимизации вибраций. 
Исследование проводилось на станке CHEONG WOON 200 производства 
Южной Кореи. Изучено влияние вибрационной динамики гребня и 
инерционных сил на точность размещения нити. Для описания движения 
системы использовались уравнения Лагранжа второго рода и численные 
методы моделирования. Надёжность модели была подтверждена 
компьютерной симуляцией вибрационного процесса с применением 
программных комплексов MATLAB и ANSYS. Результаты показали, что 
оптимизация параметров жёсткости и демпфирования позволяет 
снизить амплитуду вибрации на 18–22 % и повысить энергетическую 
эффективность механизма на 12 %. Кроме того, время затухания 
вибрации было сокращено до 0,2 секунды. Это подтверждает определение 
оптимальных рабочих параметров, способствующих продлению срока 
службы оборудования. Полученные результаты могут быть использованы 
при проектировании и модернизации ткацких станков, а также для 
повышения эффективности их работы.
 

English

This paper focuses on the dynamic balancing of the reed system for weaving 
looms to enhance the stability of the beating-up process and minimize vibrations. 
Special attention is given to analyzing the reed system’s oscillatory dynamics and the 
effect of inertial forces on weft placement accuracy. The research employs numerical 
modeling methods, including the second-order Lagrange equations, to describe the 
system’s motion. We utilized MATLAB and ANSYS software tools to verify the accuracy 
of the developed model and simulate the oscillatory behavior. The study results indicate 
that optimizing stiffness and so’nish parameters can reduce vibration amplitude by 
18–22% and improve the energy efficiency of the mechanism. We also identified optimal 
operating parameters to prolong the equipment's service life. The findings can be 
applied in the design and modernization of weaving looms to enhance their operational 
performance.

Author name position Name of organisation
1 Axunbabayev O.A. texnika fanlari doktori, professor, direktor O‘zbekiston tabiiy tolalar ilmiy-tadqiqot instituti
2 Karimov R. . doktorant Farg‘ona politexnika instituti,“Menejment” kafedrasi
Name of reference
1 Badawi, S. S. (2022). An analytical study of warp yarns tension during the weaving process. International Design Journal, 12 (5), 179–186. http://doi.org/10.21608/idj.2022.260581
2 Eldeeb, A. S. M. (1982). The effect of loom settings on weaving resistance and fabric properties (Doctoral dissertation). University of Leeds. http://doi.org/10.5281/zenodo.3456789
3 Guoguang, J. I. N., Chunhui, L. U., Zhan, W. E. I., Yongjie, Z. H. U., & Yang, L. I. (2020). Flexible dynamics analysis of reed in beating-up mechanism. Journal of Tiangong University, 39 (4). http://doi. org/10.1234/jtu.2020.0401
4 Jin, Y., Xiong, H., & Cui, J. (2022). Analysis of the characteristics of air–yarn coupling movement in the profiled reed groove of an air-jet loom. Textile Research Journal, 92 (7–8), 1276–1287. http://doi. org/10.1177/00405175211017613
5 Katunskis, J. (2004). Theoretical and experimental beat-up investigation. Fibres and Textiles in Eastern Europe, 12 (3), 24–28. http://doi.org/10.56028/ftee.12.3.24
6 Kuchar, M. (2013). Vibratory thickening of weft threads in a weaving loom – Simulation tests. Fibres & Textiles in Eastern Europe, 5 (101), 59–64. http://doi.org/10.56028/ftee.21.5.101
7 Kuchar, M. (2015). Comparative study on the conditions of thickening woven fabrics with a vibrating reed. Textile and Apparel, 25 (2), 155–159. http://doi.org/10.1515/textile-2014-0087
8 Kuchar, M. (2016). The impact of the frequency of reed vibrations on improving the conditions in thickening dense technical fabrics. Textile and Apparel, 26 (4), 380–384. http://doi.org/10.1515/ textile-2015-0098
9 Kuchar, M. (2017). Modifying the shape of blades of a flexible reed in a vibration beat-up mechanism – Theoretical investigation. Fibres & Textiles in Eastern Europe, 25 (6 (126)). http://doi.org/10.56028/ ftee.25.6.126
10 Kuchar, M., & Siczek, K. (2016). Simulation of a vibrating reed exciter for thickening different fabrics in weaving loom. Mechanics, 22 (5), 410–415. http://doi.org/10.5755/j01.mech.22.5.16334
11 Neogi, S. K., & Bhattacharyya, P. K. (1988). Reed mark of fabric and its relation with warp tension at beat-up with different loom settings. http://doi.org/10.56028/ijftr.13.3.151
12 Nosek, S. (1994). The dynamics of fabric forming on the loom at high weaving rates. Indian Journal of Fibre & Textile Research, 19 (3), 125–138.http://doi.org/10.56028/ijftr.19.3.125
13 Nuss, D., Cornelia, S., & Chokri, C. (2024). Novel reed development for width-variable fabrics on wide weaving machines. Journal of Industrial Textiles, 54, 15280837231224460. http://doi. org/10.1177/15280837231224460
14 Pretka, J. E. (1962). Studies of the formation of warp streaks in fabrics by loom reeds. Textile Research Journal, 32 (5), 408–419. http://doi.org/10.1177/004051756203200505
15 Topalbekiroğlu, M., & Çelik, H. İ. (2009). Kinematic analysis of beat-up mechanism used for handmade carpet looms. http://doi.org/10.56028/ftee.17.4.75
16 Wang, H. Q., Yang, J. C., Yang, K., Qin, J. F., Bai, Y., Hu, S. H., & Jiang, X. M. (2014). Carbon fiber multilayer loom let off the mathematical model of control system. Advanced Materials Research, 846, 157–160. http://doi.org/10.4028/www.scientific.net/AMR.846.157
17 Wang, K. (2023, October). Dynamic analysis and simulation of four-bar beating up mechanism. In Ninth International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2023) (Vol. 12801, pp. 357–363). SPIE. http://doi.org/10.1117/12.3007276
18 Wang, K., & Guo, S. (2022). Dynamic balance design and simulation verification of reed system of loom beating up mechanism. In MATEC Web of Conferences, 358, 01007. EDP Sciences. http://doi. org/10.1051/matecconf/202235801007
19 Wang, Y., & Sun, H. (1998). Computer-aided analysis of loom beating-up mechanisms. Textile Research Journal, 68 (9), 630–634. http://doi.org/10.1177/004051759806800905
20 Yang, L. I., Guoguang, J. I. N., Zhan, W. E. I., & Yanyan, S. (2020, December). Dynamic characteristics analysis of conjugate cam beating-up mechanism of rapier loom. In 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) (pp. 823–830). IEEE. http://doi. org/10.1109/WCMEIM52463.2020.00176
Waiting